Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 26 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WU Ling-ling, LING Hua-yun, ZHOU Ying, QIU Li-juan, WANG Hong, XUE Yu, CHEN Hui-juan, WANG Ting-rui, WANG Bin. Construction and analysis of ceRNA network in salivary gland tissues of patients with primary Sjogren's syndrome[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(7): 777-783. doi: 10.16462/j.cnki.zhjbkz.2022.07.006
Citation: WU Ling-ling, LING Hua-yun, ZHOU Ying, QIU Li-juan, WANG Hong, XUE Yu, CHEN Hui-juan, WANG Ting-rui, WANG Bin. Construction and analysis of ceRNA network in salivary gland tissues of patients with primary Sjogren's syndrome[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(7): 777-783. doi: 10.16462/j.cnki.zhjbkz.2022.07.006

Construction and analysis of ceRNA network in salivary gland tissues of patients with primary Sjogren's syndrome

doi: 10.16462/j.cnki.zhjbkz.2022.07.006
Funds:

National Natural Science Foundation of China 81573217

More Information
  • Corresponding author: WANG Bin, E-mail: wangbin@ahmu.edu.cn
  • Received Date: 2021-10-31
  • Rev Recd Date: 2022-02-15
  • Available Online: 2022-07-19
  • Publish Date: 2022-07-10
  •   Objective  The competing endogenous RNAs (ceRNA) regulation network in salivary gland tissues of patients with primary Sjögren's syndrome (pSS) was constructed by bioinformatics methods and its pathogenesis was investigated.  Methods  Differential expression analyses of messenger RNA (mRNA) dataset and long non-coding RNA (lncRNA) dataset from salivary gland tissues of pSS patients were conducted based on GEO database. Target miRNA and target mRNA related to pSS were obtained through miRNA databases, and then lncRNA-miRNA-mRNA ceRNA regulation network was constructed. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed for differentially expressed mRNAs (DEmRNAs) in the ceRNA regulation network.  Results  A total of 214 target mRNA were obtained in the ceRNA network. KEGG analysis of different genes in the network showed that the main gene enrichment pathway were mitogen-activated protein kinase (MAPK) signaling pathway and AMP-activated protein kinase (AMPK) signaling pathway. Hub gene JUN, CCND1, NRAS, DDX5, KAT2B, VEGFA, SIRT1, CLTA, MCM7 and RPS6KA1 were selected in pSS.  Conclusion  This study finds that the DEmRNAs in the ceRNA regulatory network mainly enriched in MAPK and AMPK signaling pathways, which provided a new idea for the diagnosis and treatment of primary Sjogren's syndrome.
  • loading
  • [1]
    Fox RI. Sjögren's syndrome[J]. Lancet, 2005, 366(9482): 321-331. DOI: 10.1016/s0140-6736(05)66990-5.
    [2]
    Mavragani CP. Mechanisms and new strategies for primary Sjögren's syndrome[J]. Annu Rev Med, 2017, 68: 331-343. DOI: 10.1146/annurev-med-043015-123313.
    [3]
    Patel R, Shahane A. The epidemiology of Sjögren's syndrome[J]. Clin Epidemiol, 2014, 6: 247-255. DOI: 10.2147/CLEP.S47399.
    [4]
    García-Carrasco M, Fuentes-Alexandro S, Escárcega RO, et al. Pathophysiology of Sjögren's syndrome[J]. Arch Med Res, 2006, 37(8): 921-932. DOI: 10.1016/j.arcmed.2006.08.002.
    [5]
    Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu RevBiochem, 2010, 79: 351-379. DOI: 10.1146/annurev-biochem-060308-103103.
    [6]
    Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language?[J]. Cell, 2011, 146(3): 353-358. DOI: 10.1016/j.cell.2011.07.014.
    [7]
    Fitzgerald KA, Caffrey DR. Long noncoding RNAs in innate and adaptive immunity[J]. Curr Opin Immunol, 2014, 26: 140-146. DOI: 10.1016/j.coi.2013.12.001.
    [8]
    Li M, Guan H. Noncoding RNAs regulating NF-κB signaling[J]. Adv Exp Med Biol, 2016, 927: 317-336. DOI: 10.1007/978-981-10-1498-7_12.
    [9]
    Marques-Rocha JL, Samblas M, Milagro FI, et al. Noncoding RNAs, cytokines, and inflammation-related diseases[J]. Faseb J, 2015, 29(9): 3595-3611. DOI: 10.1096/fj.14-260323.
    [10]
    Dolcino M, Tinazzi E, Vitali C, et al. Long non-coding RNAs modulate Sjögren's syndrome associated gene expression and are involved in the pathogenesis of the disease[J]. J Clin Med, 2019, 8(9): 1349. DOI: 10.3390/jcm8091349.
    [11]
    Cheng C, Zhou J, Chen R, et al. Predicted disease-specific immune infiltration patterns decode the potential mechanisms of long non-coding RNAs in primary Sjogren's syndrome[J]. Front Immunol, 2021, 12: 624614. DOI: 10.3389/fimmu.2021.624614.
    [12]
    Iborra S, Soto M, Stark-Aroeira L, et al. H-ras and N-ras are dispensable for T-cell development and activation but critical for protective Th1 immunity[J]. Blood, 2011, 117(19): 5102-5111. DOI: 10.1182/blood-2010-10-315770.
    [13]
    Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease[J]. Biochim Biophys Acta Gene Regul Mech, 2021, 1864(2): 194609. DOI: 10.1016/j.bbagrm.2020.194609.
    [14]
    Liu Y, Bao C, Wang L, et al. Complementary roles of GCN5 and PCAF in Foxp3+ T-Regulatory cells[J]. Cancers (Basel), 2019, 11(4): 554. DOI: 10.3390/cancers11040554.
    [15]
    Kim SR, Lee KS, Park SJ, et al. Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease[J]. J Allergy Clin Immunol, 2010, 125(2): 449-460. DOI: 10.1016/j.jaci.2009.08.009.
    [16]
    Wang J, Zhao C, Kong P, et al. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice[J]. Int Immunopharmacol, 2016, 39: 287-294. DOI: 10.1016/j.intimp.2016.07.036.
    [17]
    Yang H, Bi Y, Xue L, et al. Multifaceted modulation of SIRT1 in cancer and inflammation[J]. Crit Rev Oncog, 2015, 20(1-2): 49-64. DOI: 10.1615/critrevoncog.2014012374.
    [18]
    Zeng H, Chi H. Metabolic control of regulatory T cell development and function[J]. Trends Immunol, 2015, 36(1): 3-12. DOI: 10.1016/j.it.2014.08.003.
    [19]
    Singh N, Cohen PL. The T cell in Sjogren's syndrome: force majeure, not spectateur[J]. J Autoimmun, 2012, 39(3): 229-233. DOI: 10.1016/j.jaut.2012.05.019.
    [20]
    Maehara T, Moriyama M, Hayashida JN, et al. Selective localization of T helper subsets in labial salivary glands from primary Sjögren's syndrome patients[J]. Clin Exp Immunol, 2012, 169(2): 89-99. DOI: 10.1111/j.1365-2249.2012.04606.x.
    [21]
    Gougopoulou DM, Kiaris H, Ergazaki M, et al. Mutations and expression of the ras family genes in leukemias[J]. Stem Cells, 1996, 14(6): 725-729. DOI: 10.1002/stem.140725.
    [22]
    Downey M. Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases[J]. Biochim Biophys Acta Gene Regul Mech, 2021, 1864(2): 194608. DOI: 10.1016/j.bbagrm.2020.194608.
    [23]
    Carvalho JF, Blank M, Shoenfeld Y. Vascular endothelial growth factor (VEGF) in autoimmune diseases[J]. J Clin Immunol, 2007, 27(3): 246-256. DOI: 10.1007/s10875-007-9083-1.
    [24]
    Roy R, Zhang B, Moses MA. Making the cut: protease-mediated regulation of angiogenesis[J]. Exp Cell Res, 2006, 312(5): 608-622. DOI: 10.1016/j.yexcr.2005.11.022.
    [25]
    Sisto M, Lisi S, Lofrumento DD, et al. Sjögren's syndrome pathological neovascularization is regulated by VEGF-A-stimulated TACE-dependent crosstalk between VEGFR2 and NF-κB[J]. Genes Immun, 2012, 13(5): 411-420. DOI: 10.1038/gene.2012.9.
    [26]
    Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases[J]. Microbiol Mol Biol Rev, 2011, 75(1): 50-83. DOI: 10.1128/mmbr.00031-10.
    [27]
    Culbert AA, Skaper SD, Howlett DR, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease[J]. J Biol Chem, 2006, 281(33): 23658-23667. DOI: 10.1074/jbc.m513646200.
    [28]
    Gurgis FM, Ziaziaris W, Munoz L. Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting[J]. Mol Pharmacol, 2014, 85(2): 345-356. DOI: 10.1124/mol.113.090365.
    [29]
    Krementsov DN, Thornton TM, Teuscher C, et al. The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its moDElncRNAs[J]. Mol Cell Biol, 2013, 33(19): 3728-3734. DOI: 10.1128/mcb.00688-13.
    [30]
    Fu J, Shi H, Cao N, et al. Toll-like receptor 9 signaling promotes autophagy and apoptosis via divergent functions of the p38/JNK pathway in human salivary gland cells[J]. Exp Cell Res, 2019, 375(2): 51-59. DOI: 10.1016/j.yexcr.2018.12.027.
    [31]
    Boyer PD, Chance B, Ernster L, et al. Oxidative phosphorylation and photophosphorylation[J]. Annu Rev Biochem, 1977, 46: 955-966. DOI: 10.1146/annurev.bi.46.070177.004515.
    [32]
    Katsiougiannis S, Tenta R, Skopouli FN. Activation of AMP-activated protein kinase by adiponectin rescues salivary gland epithelial cells from spontaneous and interferon-gamma-induced apoptosis[J]. A hritis Rheum, 2010, 62(2): 414-419. DOI: 10.1002/art.27239.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (225) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return