-
摘要: 本文针对流行病学研究中多中心干预设计、效应异质性、应答率、失访率等问题,深入分析了其与样本代表性的关系。同时,针对当前精准医学和基于大数据流行病学研究的发展趋势,讨论了样本代表性问题的现实意义。总而言之,人群健康研究工作者应正确认识样本代表性在流行病学研究中的作用和地位,科学合理设计研究以获得最佳证据。Abstract: The review clarifies the relation of representativeness to multicenter intervention design, heterogeneity, response rate, and loss to follow-up. In addition, the implications of representativeness in the era of precision medicine and big data-based epidemiological studies are further discussed. In summary, population health researchers should have a fair understanding of the function and role of representativeness in epidemiology in order to conduct scientifically plausible studies to generate the best evidence for practice.
-
Key words:
- Epidemiology /
- Sample /
- Representativeness
-
[1] Robertson D, Williams GH. Clinical and translational science: principles of human research[J]. Academic Press, 2009. http://www.martinsfontespaulista.com.br/clinical-and-translational-science-principles-of-human-research-271737.aspx/p [2] Appel LJ. A primer on the design, conduct, and interpretation of clinical trials[J]. Clin J Am Soc Nephrol, 2006, 1(6): 1360-1367. DOI: 10.2215/CJN.02850806. [3] Rothwell PM. External validity of randomised controlled trials: "to whom do the results of this trial apply?"[J]. Lancet, 2005, 365(9453): 82-93. DOI: 10.1016/S0140-6736(04)17670-8. [4] Rothwell PM. Factors that can affect the external validity of randomised controlled trials[J]. PLoS Clin Trials, 2006, 1(1): e9. DOI: 10.1371/journal.pctr.0010009. [5] Mishra D, Vora J. Non interventional drug studies in oncology: Why we need them?[J]. Perspect Clin Res, 2010, 1(4): 128-133. DOI: 10.4103/2229-3485.71770. [6] Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-world evidence - what is it and what can it tell us?[J]. N Engl J Med, 2016, 375(23): 2293-2297. DOI: 10.1056/NEJMsb1609216. [7] 唐金陵, 杨祖耀. 观察与实验效力与效果[J]. 中华流行病学杂志, 2014, 35(3): 221-227. DOI: 10.3760/cma.j.issn.0254-6450.2014.03.001.Tang JL, Yang ZY. Observation versus experiment, efficacy versus effectiveness[J]. Chin J Epidemiol, 2014, 35(3): 221-227. DOI: 10.3760/cma.j.issn.0254-6450.2014.03.001. [8] Stang A, Jockel KH. Avoidance of representativeness in presence of effect modification[J]. Int J Epidemiol, 2014, 43(2): 630-631. DOI: 10.1093/ije/dyt263. [9] Rothman K, Hatch E, Gallacher J. Representativeness is not helpful in studying heterogeneity of effects across subgroups[J]. Int J Epidemiol, 2014, 43(2): 633-634. doi: 10.1093/ije/dyt265 [10] Kristman V, Manno M, Cote P. Loss to follow-up in cohort studies: how much is too much?[J]. Eur J Epidemiol, 2004, 19(8): 751-760. DOI: 10.1023/B:EJEP.0000036568.02655.f8. [11] Stang A. Nonresponse research——an underdeveloped field in epidemiology[J]. Eur J Epidemiol, 2003, 18(10): 929-931. http://europepmc.org/abstract/MED/14598921 [12] Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, Poole C. Illustrating bias due to conditioning on a collider[J]. Int J Epidemiol, 2010, 39(2): 417-420. DOI: 10.1093/ije/dyp334. [13] Tripepi G, Jager KJ, Dekker FW, et al. Selection bias and information bias in clinical research[J]. Nephron Clin Pract, 2010, 115(2): c94-99. DOI: 10.1159/000312871. [14] Nohr EA, Frydenberg M, Henriksen TB, et al. Does low participation in cohort studies induce bias?[J]. Epidemiology, 2006, 17(4): 413-418. DOI: 10.1097/01.ede.0000220549.14177.60. [15] Manolio TA, Collins R. Enhancing the feasibility of large cohort studies[J]. JAMA, 2010, 304(20): 2290-2291. DOI: 10.1001/jama.2010.1686. [16] Manolio TA, Weis BK, Cowie CC, et al. New models for large prospective studies: is there a better way?[J]. Am J Epidemiol, 2012, 175(9): 859-866. DOI: 10.1093/aje/kws409. [17] Manolio TA, Collins R, National Institutes of Health New Models Workshop Participants. Vehement agreement on new models?[J]. Am J Epidemiol, 2013, 177(4): 290-291. DOI: 10.1093/aje/kws410. [18] Chen Z, Lee L, Chen J, et al. Cohort profile: the Kadoorie study of chronic disease in China (KSCDC)[J]. Int J Epidemiol 2005, 34(6): 1243-1249. DOI: 10.1093/ije/dyi174. [19] Chen Z, Chen J, Collins R, et al. China Kadoorie biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up[J]. Int J Epidemiol, 2011, 40(6): 1652-1666. DOI: 10.1093/ije/dyr120. [20] Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med, 2015, 12(3): e1001779. DOI: 10.1371/journal.pmed.1001779. [21] Kuehn BM. Study recruitment to accelerate precision medicine[J]. JAMA, 2018, 319(4): 332. http://europepmc.org/abstract/MED/29362781 [22] Schmidt C. The Death of a Study. A long-term study of childhood disease burned through 1.3 billion in taxpayer funds, only to be mothballed before it ever got off the ground. Why?[EB/OL]. (2016-5-25)[2018-6-19]. qhttps://undark.org/article/the-death-of-a-study-national-childrens-study/ [23] Rothman KJ, Gallacher JE, Hatch EE. Why representativeness should be avoided[J]. Int J Epidemiol, 2013, 42(4): 1012-1014. DOI: 10.1093/ije/dys223. [24] Zhan Q, Qian H. Opportunities and advantages for the development of precision medicine in China[J]. Science/AAAS Custom Publishing Office, Precision medicine in China Washington, DC: Science/AAAS 2016: 6. doi: 10.1186/s13073-016-0388-7 [25] Thygesen LC, Ersboll AK. When the entire population is the sample: strengths and limitations in register-based epidemiology[J]. Eur J Epidemiol, 2014, 29(8): 551-558. DOI: 10.1007/s10654-013-9873-0. [26] 唐金陵, 李立明. 关于循证医学、精准医学和大数据研究的几点看法[J]. 中华流行病学杂志, 2018, 39(1): 1-7. DOI: 10.3760/cma.j.issn.0254-6450.2018.01.001.Tang JL, Li LM. Some reflections on evidenced-based medicine, precision medicine, and big data-based research[J]. Chin J Epidemiol, 2018, 39(1): 1-7. DOI: 10.3760/cma.j.issn.0254-6450.2018.01.001.
点击查看大图
计量
- 文章访问数: 563
- HTML全文浏览量: 279
- PDF下载量: 89
- 被引次数: 0