• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天津市市郊社区不同采暖期昼夜PM2.5成分及来源差异

赵岩 冯利红 姜长城 李建平 商博东 吴颖虹 吕光

赵岩, 冯利红, 姜长城, 李建平, 商博东, 吴颖虹, 吕光. 天津市市郊社区不同采暖期昼夜PM2.5成分及来源差异[J]. 中华疾病控制杂志, 2019, 23(9): 1121-1125, 1131. doi: 10.16462/j.cnki.zhjbkz.2019.09.020
引用本文: 赵岩, 冯利红, 姜长城, 李建平, 商博东, 吴颖虹, 吕光. 天津市市郊社区不同采暖期昼夜PM2.5成分及来源差异[J]. 中华疾病控制杂志, 2019, 23(9): 1121-1125, 1131. doi: 10.16462/j.cnki.zhjbkz.2019.09.020
ZHAO Yan, FENG Li-hong, JIANG Chang-cheng, LI Jian-ping, SHANG Bo-dong, WU Ying-hong, LV Guang. Composition and source apportionment differences of daytime and nighttime samples of PM2.5 in the community of suburb in Tianjin during different heating periods[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(9): 1121-1125, 1131. doi: 10.16462/j.cnki.zhjbkz.2019.09.020
Citation: ZHAO Yan, FENG Li-hong, JIANG Chang-cheng, LI Jian-ping, SHANG Bo-dong, WU Ying-hong, LV Guang. Composition and source apportionment differences of daytime and nighttime samples of PM2.5 in the community of suburb in Tianjin during different heating periods[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(9): 1121-1125, 1131. doi: 10.16462/j.cnki.zhjbkz.2019.09.020

天津市市郊社区不同采暖期昼夜PM2.5成分及来源差异

doi: 10.16462/j.cnki.zhjbkz.2019.09.020
基金项目: 

大气重污染成因与治理攻关项目 DQGG0401

天津市疾病预防控制中心科技基金项目 CDCKY1404

详细信息
    通讯作者:

    赵岩. E-mail: kevin2002a@163.com

  • 中图分类号: R126.8

Composition and source apportionment differences of daytime and nighttime samples of PM2.5 in the community of suburb in Tianjin during different heating periods

Funds: 

National Research program for Key Issues in the Air Pollution Control DQGG0401

Tianjin Centers for Disease Control and Prevention Technology Funds CDCKY1404

More Information
  • 摘要:   目的  了解在采暖和非采暖期天津市周边区域居民社区不同时段空气中细颗粒物(fine particulate matter,PM2.5)的污染和来源差异。  方法  采集市郊某社区2015-2016年间每日昼夜两时段的PM2.5样品,分别检测PM2.5样品的质量浓度,金属元素,多环芳烃和无机水溶性离子浓度,并运用正矩阵因子分解模型分析社区不同时段空气中PM2.5的金属元素,多环芳烃和无机水溶性离子的来源差异。  结果  在采暖期城市周边居民社区部分金属元素日间时段浓度高于夜间时段,在非采暖期部分多环芳烃和无机水溶性离子浓度夜间时段高于日间时段,而部分金属元素日间时段浓度高于夜间时段,采暖期城市周边居民社区空气PM2.5日间时段的主要来源为燃煤排放,来源贡献率为50.1%,夜间时段的主要来源分别为二次气溶胶和汽、柴油车燃料燃烧排放,来源贡献率分别为41.0%和35.9%。非采暖期城市周边居民社区空气PM2.5日间时段的主要来源为室内活动排放,夜间时段主要来源为二次气溶胶,来源贡献率分别为29.8%和31.1%。  结论  城市周边区域居民社区空气PM2.5的污染状况较为严重,不同采暖期和不同时段的污染来源均存在差异。
  • 图  1  采暖期城市周边社区不同时段空气中PM2.5来源贡献率

    Figure  1.  The source contribution rates of day and night PM2.5 of suburban residential community during the heating period

    图  2  非采暖期城市周边社区空气PM2.5不同时段来源贡献率

    Figure  2.  The source contribution rates of day and night PM2.5 of suburban residential community during the non-heating period

    表  1  不同采暖期天津市市郊昼夜PM2.5成分的浓度差异[M(P25P75)]

    Table  1.   The difference of various components in day and night PM2.5 of suburban residential community in Tianjin under different heating periods [M(P25, P75)]

    成分 采暖期 非采暖期
    日间 夜间 Z P 日间 夜间 Z P
    Phe (ng/m3) 0.73(0.28, 3.96) 0.63(0.28, 3.80) 0.22 0.823 0.28(0.28, 0.95) 0.28(0.28, 0.62) 0.21 0.835
    Fl(ng/m3) 3.55(1.18, 14.25) 2.57(0.72, 12.20) 0.56 0.576 0.28(0.28, 4.17) 0.28(0.28, 3.68)b 2.12 0.034
    Pyr(ng/m3) 3.27(1.03, 11.80) 2.36(0.68, 11.30) 0.45 0.653 0.40(0.20, 3.80) 0.43(0.20, 3.89) 1.19 0.234
    BaA(ng/m3) 1.43(0.24, 9.73) 1.68(0.24, 10.99) 0.49 0.621 -a 0.24(0.24, 0.90)b 4.32 <0.001
    BbF(ng/m3) 5.05(1.42, 21.90) 4.84(1.47, 24.00) 0.06 0.949 0.28(0.28, 1.01) 0.68(0.28, 4.98)b 4.19 <0.001
    BkF(ng/m3) 1.46(0.66, 6.65) 1.21(0.41, 7.09) 0.27 0.787 0.24(0.24, 0.99) 0.24(0.24, 1.61)b 2.69 0.007
    BaP(ng/m3) 1.34(0.28, 11.91) 1.74(0.28, 14.15) 0.38 0.705 -a 0.28(0.28, 1.53)b 4.32 <0.001
    InP(ng/m3) 2.27(0.45, 12.40) 1.86(0.52, 12.35) 0.15 0.882 -a 0.26(0.26, 0.76)b 4.32 <0.001
    DahA(ng/m3) 0.41(0.14, 3.15) 0.37(0.14, 2.87) 0.26 0.795 -a -a 0.00 1.000
    BghiP(ng/m3) 2.27(0.71, 13.36) 1.62(0.92, 13.20) 0.31 0.758 0.26(0.26, 0.91) 0.44(0.26, 1.83)b 3.81 <0.001
    Be(ng/m3) 0.02(0.01, 0.05)b 0.01(0.01, 0.02) 2.07 0.038 -a -a 0.00 1.000
    Na(μg/m3) 0.01(0.01, 0.40) 0.01(0.01, 0.50) 0.41 0.679 0.13(0.01, 0.84)b 0.01(0.01, 1.99) 2.69 0.007
    Mg(μg/m3) 0.05(0.00, 0.16) 0.04(0.00, 0.10) 0.78 0.437 0.22(0.00, 0.34)b 0.13(0.00, 2.02) 2.40 0.016
    Al(μg/m3) 0.25(0.12, 0.40)b 0.11(0.06, 0.21) 2.60 0.009 0.23(0.02, 0.52)b 0.19(0.02, 0.40) 2.15 0.031
    Ga(μg/m3) 0.28(0.03, 0.59) 0.24(0.01, 0.59) 0.32 0.751 1.13(0.01, 1.83)b 0.62(0.01, 5.87) 3.02 0.003
    V(ng/m3) 3.47(1.66, 6.44) 2.34(0.74, 5.46) 1.45 0.147 7.43(0.03, 15.82)b 2.35(0.03, 10.94) 3.75 <0.001
    Cr(ng/m3) 2.30(0.51, 4.26) 1.62(0.60, 3.61) 1.14 0.253 1.01(0.08, 15.04) 0.41(0.08, 6.86) 1.50 0.135
    Ni(ng/m3) 3.10(1.83, 5.28) 2.38(1.24, 3.57) 1.85 0.065 2.84(0.05, 7.42)b 1.63(0.05, 5.07) 3.71 <0.001
    Cu(μg/m3) 0.04(0.02, 0.07)b 0.02(0.01, 0.05) 2.52 0.012 0.02(0.00, 0.10) 0.01(0.00, 0.04) 1.41 0.157
    Zn(μg/m3) 0.59(0.21, 0.80)b 0.28(0.08, 0.52) 2.55 0.011 0.15(0.04, 0.51) 0.11(0.00, 0.45) 0.96 0.338
    As(μg/m3) 0.02(0.01, 0.03)b 0.01(0.01, 0.02) 2.55 0.011 6.04(1.91, 17.90) 4.27(0.09, 13.40) 1.50 0.133
    Se(μg/m3) 0.01(0.01, 0.01)b 0.01(0.00, 0.01) 2.45 0.014 0.00(0.00, 0.01)b 0.00(0.00, 0.01) 3.31 0.001
    Cd(ng/m3) 5.53(2.48, 7.66)b 2.27(1.06, 5.50) 2.60 0.009 0.71(0.01, 5.06) 0.89(0.01, 3.42) 0.68 0.495
    Hg(ng/m3) 0.05(0.05, 0.08)b 0.05(0.05, 0.05) 2.48 0.013 -a -a 0.00 1.000
    TI(ng/m3) 1.77(0.82, 2.81)b 1.18(0.49, 1.82) 2.67 0.007 0.24(0.01, 1.96) 0.41(0.01, 1.46) 0.22 0.828
    Pb(μg/m3) 0.12(0.07, 0.16)b 0.07(0.04, 0.11) 2.89 0.004 0.04(0.01, 0.09) 0.04(0.00, 0.09) 1.56 0.119
    Cl-(μg/m3) 4.92(2.03, 8.74) 5.18(2.01, 8.93) 0.12 0.903 0.39(0.01, 7.01) 1.60(0.70, 5.62)b 6.69 <0.001
    SO42-(μg/m3) 20.80(11.17, 33.69) 16.70(6.93, 24.44) 1.52 0.129 11.06(0.01, 28.66) 11.06(4.83, 26.24) 0.39 0.694
    NO3-(μg/m3) 25.30(12.60, 44.95) 16.70(7.31, 36.01) 1.26 0.207 2.79(0.01, 18.66) 10.66(2.84, 19.63)b 5.29 <0.001
    NH4+(μg/m3) 21.20(9.50, 28.00) 13.40(5.31, 23.36) 1.42 0.156 1.42(0.04, 20.38) 8.35(0.04, 14.03)b 2.60 0.009
      注:a表示该成分浓度数值为常量;b表示昼夜浓度比较差异有统计学意义,P < 0.05。
    下载: 导出CSV
  • [1] Kloog I, Ridgway B, Koutrakis P, et al. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models[J]. Epidemiology, 2013, 24(4): 555-561. DOI: 10.1097/EDE.0b013e318294beaa.
    [2] 张经纬, 冯利红, 侯常春, 等. 天津市大气污染对儿童呼吸系统疾病影响的病例交叉研究[J]. 中华疾病控制杂志, 2019, 23(5): 545-549. DOI: 10.16462/j.cnki.zhjbkz.2019.05.011.

    Zhang JW, Feng LH, Hou CC, et al. The impact of air pollution on children's respiratory disease in Tianjin: a case over study[J]. Chin J Dis Control Prev, 2019, 23(5): 545-549. DOI: 10.16462/j.cnki.zhjbkz.2019.05.011.
    [3] 李恩平. 天津市三个层面区域经济关系及优化对策研究[J]. 天津商业大学学报, 2017, 37(1): 38-44. DOI: 1674-2362(2017)01-0038-07.

    Li EP. Regional economic relations and optimization countermeasures at three levels in Tianjin metropolitan area[J]. Journal of Tianjin University of Commerce, 2017, 37(1): 38-44. DOI: 1674-2362(2017)01-0038-07.
    [4] Norris G, Duvall R, Brown S, et al. EPA positive matrix factorization (PMF 5.0) fundamentals and user guide[R]. Washington DC: US Environmental Protection Agency, 2014.
    [5] Paatero P, Tapper U. Analysis of different modes of factor analysis as least squares fit problem[J]. Chemometrics and Intelligent Laboratory Systems, 1993, 18(2): 183-194. DOI: 10.1016/0169-7439(93)80055-M.
    [6] Bragato M, Joshi K, Carlson JB, et al. Combustion of coal, bagasse and blends thereof: Part Ⅱ: Speciation of PAH emission[J]. Fuel, 2012, 96(6): 51-58. DOI: 10.1016/j.fuel.2011.11.069.
    [7] Birmili W, Allen AG, Bary F, et al. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic[J]. Environ Sci Technol, 2006, 40(4): 1144-1153. DOI: 10.1021/es0486925.
    [8] Yao XH, Chan CK, Fang M, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China[J]. Atmos Environ, 2002, 36(26): 4223-4234. DOI: 10.1016/s1352-2310(02)00342-4.
    [9] Xie Y, Zhao B. Chemical composition of outdoor and indoor PM2.5 collected during haze events: transformations and modified source contributions resulting from outdoor-to-indoor transport[J]. Indoor Air, 2018, 28(6): 828-839. DOI: 10.1111/ina.12503.
    [10] Yu L, Wang G, Zhang R, et al. Characterization and source apportionment of PM2.5 in an urban environment in Beijing[J]. Aerosol Air Qual Res, 2013, 13(2): 574-583. DOI: 10.4209/aaqr.2012.07.0192.
    [11] Hagler GS, Bergin MH, Salmon LG, et al. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China[J]. Atmos Environ, 2006, 40(20): 3802-3815. DOI: 10.1016/j.atmosenv.2006.02.032.
    [12] Zhang J, Zhou X, Wang Z, et al. Trace elements in PM2.5 in Shandong province: source identification and health risk assessment[J]. Sci Total Environ, 2017, 621(8): 558-577. DOI: 10.1016/j.scitotenv.2017.11.292.
    [13] Chin JY, Batterman SA, Northrop WF, et al. Gaseous and particulate emissions from diesel engines at idle and under load: comparison of biodiesel blend and ultralow sulfur diesel fuels[J]. Energy Fuels, 2012, 26(11): 6737-6748. DOI: 10.1021/ef300421h.
    [14] Guarieiro ALN, JSantos VS, Eiguren-Fernandez A, et al. Redox activity and PAH content in size-classified nanoparticles emitted by a diesel engine fuelled with biodiesel and diesel blends[J]. Fuel, 2014, 116(2): 490-497. DOI: 10.1016/j.fuel.2013.08.029.
    [15] Liao HT, Chou CC, Chow JC, et al. Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data[J]. Environ Pollut, 2015, 205(10): 121-130. DOI: 10.1016/j.envpol.2015.05.035.
    [16] Yang Y, Liu L, Xu C, et al. Source apportionment and influencing factor analysis of residential indoor PM2.5 in Beijing[J]. Int J Environ Res Public Health, 2018, 15(4): 686-704. DOI: 10.3390/ijerph15040686.
    [17] Turap Y, Talifu D, Wang X, et al. Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China[J]. Environ Sci Pollut Res Int, 2018, 25(23): 22629-22640. DOI: 10.1007/s11356-018-2082-3.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  143
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-15
  • 修回日期:  2019-07-10
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回