Rosiglitazone pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury
-
摘要:
目的 探讨罗格列酮(rosiglitazone, RSG)抑制细菌脂多糖(lipopolysaccharide, LPS)所致急性肾损伤过程中氧化应激的机制。 方法 48只雄性CD-1小鼠随机分成对照组、RSG组、LPS 6 h组、LPS 24 h组、RSG+LPS 6 h组和RSG+LPS 24 h组共6组。LPS组小鼠经腹腔注射给予单剂量LPS(2 mg/kg); RSG+LPS组于LPS注射前经口灌胃给予RSG(10 mg/kg), 每天1次, 连续4 d。LPS注射后6 h和24 h取小鼠血清和肾脏组织。一侧肾脏用于苏木精-伊红染色法(hematoxylin-eosin staining, 简称HE染色法)并观察肾脏病理学损伤; 用全自动生化分析仪检测血清肌酐和尿素氮反映肾功能; 用生化方法检测肾脏还原型谷胱甘肽(glutathione, GSH)和丙二醛(malondialdehyde, MDA)水平; 用real time RT-PCR检测肾脏氧化应激相关基因(P47 phox, Sod-1, Sod-2, Sod-3)表达水平; 用蛋白质印迹(western blot, 简称WB)法检测肾脏NADPH氧化酶亚基NOX-2和NOX-4蛋白水平。 结果 RSG预处理明显减轻LPS所致肾小管破坏和肾功能损害, 抑制LPS所致肾脏炎性细胞浸润; RSG预处理抑制LPS所致肾脏MDA水平升高, LPS暴露下调了肾脏GSH水平, RSG预处理有改善LPS诱发GSH耗竭的趋势, 但无统计学意义; RSG阻断LPS上调肾脏P47 phox mRNA表达水平; RSG预处理抑制LPS诱导肾脏NOX-2和NOX-4蛋白表达水平升高。 结论 RSG预处理减轻LPS诱发肾脏氧化应激反应。 Abstract:Objective To investigate the effects of pretreatment with rosiglitazone(RSG) on oxidative stress in lipopolysaccharide(LPS)-induced acute kidney injury(AKI). Methods Forty-eight male ICR mice were divided into six groups: Control group, RSG group, LPS 6 h group, LPS 24 h group, RSG+LPS 6 h group, and RSG+LPS 24 h group. In the LPS and LPS+RSG groups, mice were intraperitoneal injected with LPS(2 mg/kg). In the RSG and RSG+LPS groups, mice were administered with RSG(10 mg/kg) by gavage four consecutive days before LPS injection. All mice were sacrificed at 6 h and 24 h after LPS injection. Some kidneys were collected for HE staining. Renal GSH and MDA were detected using biochemical method. Renal oxidant stress related genes were analyzed through real time RT-PCR. Renal NADPH oxidase-2 and NOX-4 were measured by Western blot. Serum was acquired for renal function. Results LPS-induced AKI, as determined renal pathological damage, renal function injury and inflammatory cell infiltration, were attenuated in RSG-pretreated mice. Although it did not affect renal GSH level, RSG pretreatment evidently inhibited the elevation of renal MDA content. Mechanistically, RSG pretreatment distinctly repressed LPS-induced upregulation of P47phox mRNA and nicotinamide adenine dinucleotide phosphate(NADPH) oxidase(NOX)-2 and NOX-4 in the kidney. Conclusion RSG pretreatment attenuates renal oxidative stress in LPS-induced acute kidney injury partially through inhibiting upregulation of NADPH oxidase. -
Key words:
- Rosiglitazone /
- Lipopolysaccharide /
- Acute kidney injury /
- Oxidative stress /
- NADPH oxidase
-
表 1 引物序列
Table 1. Primers for real-time RT-PCR
基因名称 序列 长度(bp) 18S 正向: 5'- GTAACCCGTTGAACCCCATT-3' 151 反向: 5'- CCATCCAATCGGTAGTAGCG-3' P47phox 正向: 5'- CCAGGGCACTCTCACTGAATA -3' 100 反向: 5'- ATCAGGCCGCACTTTGAAGAA -3' Sod-1 正向: 5'-GCGATGAAAGCGGTGTGCGTG -3' 143 反向: 5'-TGGACGTGGAACCCATGCTGG -3' Sod-2 正向: 5'-TGGACGTGGAACCCATGCTGG -3' 162 反向: 5'-AGCGAACGGCCGTGTTCTGAG -3' Sod-3 正向: 5'- GAGAAGATAGGCGACACGCA -3' 155 反向: 5'- AGAACCAAGCCGGTGATCTG-3' -
[1] Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2): R31.DOI: 10.1186/cc5713. [2] Sawhney S, Fraser SD. Epidemiology of AKI: utilizing large databases to determine the burden of AKI[J]. Adv Chronic Kidney Dis, 2017, 24(4): 194-204.DOI: 10.1053/j.ackd.2017.05.001. [3] Zager RA, Johnson AC, Lund S, et al. Acute renal failure: determinants and characteristics of the injury-induced hyperinflammatory response[J]. Am J Physiol Renal Physiol, 2006, 291(3): 546-556.DOI: 10.1152/ajprenal.00072.2006. [4] Heidari R, Ahmadi A, Mohammadi H, et al. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance[J]. Biomed Pharmacother, 2018, 107: 834-840.DOI: 10.1016/j.biopha.2018.08.050. [5] Aladaileh SH, Hussein OE, Abukhalil MH, et al. Formononetin upregulates Nrf2/HO-1 signaling and prevents oxidative stress, inflammation, and kidney injury in methotrexate-induced rats[J]. Antioxidants(Basel), 2019, 8(10): 430.DOI: 10.3390/antiox8100430. [6] 王春华, 俞百元, 余又新, 等.吴茱萸次碱对大鼠急性肾损伤氧化应激的影响及机制研究[J].安徽医科大学学报, 2018, 53(8): 1194-1197.DOI: 10.19405/j.cnki.issn1000-1492.2018.08.008.Wang CH, Yu BY, Yu YX, et al. Effects and mechanism of erigeronine on oxidative stress in rats with acute renal injury[J]. Acta Universitatis Medicinalis Anhui, 2018, 53(8): 1194-1197. DOI: 10.19405/j.cnki.issn1000-1492.2018.08.008. [7] Bo QL, Chen YH, Yu Z, et al. Rosiglitazone pretreatment protects against lipopolysaccharide-induced fetal demise through inhibiting placental inflammation[J]. Mol Cell Endocrinol, 2016, 423: 51-59.DOI: 10.1016/j.mce.2016.01.004. [8] Fu L, Chen YH, Bo QL, et al. Lipopolysaccharide downregulates 11β-hydroxysteroid dehydrogenase 2 expression through inhibiting peroxisome proliferator-activated receptor-γ in placental trophoblasts[J]. J Immunol, 2019, 203(5): 1198-1207.DOI: 10.4049/jimmunol.1900132. [9] Wang JX, Zhang C, Fu L, et al. Protective effect of rosiglitazone against acetaminophen-induced acute liver injury is associated with down-regulation of hepatic NADPH oxidases[J]. Toxicol Lett, 2017, 265: 38-46.DOI: 10.1016/j.toxlet.2016.11.012. [10] Xu S, Chen YH, Tan ZX, et al. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury[J]. Sci Rep, 2015, 5: 186-187.DOI: 10.1038/srep18687. [11] Zhu JB, Xu S, Li J, et al. Farnesoid X receptor agonist obeticholic acid inhibits renal inflammation and oxidative stress during lipopolysaccharide-induced acute kidney injury[J]. Eur J Pharmacol, 2018, 838: 60-68.DOI: 10.1016/j.ejphar.2018.09.009. [12] El-Sayed SM, El-Naggar ME, Hussein J, et al. Effect of ficus carica L leaves extract loaded gold nanoparticles against cisplatin-induced acute kidney injury[J]. Colloids Surf B Biointerfaces, 2019, 184: 110465.DOI: 10.1016/j.colsurfb.2019.110465. [13] Muǹoz M, López-Oliva ME, Rodríguez C, et al. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity[J]. Redox Biol, 2019, 28: 101330.DOI: 10.1016/j.redox.2019.101330. [14] Simone S, Rascio F, Castellano G, et al. Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury[J]. Free Radic Biol Med, 2014, 74: 263-273.DOI: 10.1016/j.freeradbiomed.2014.07.003. [15] Marcoux J, Man P, Petit-Haertlein I, et al. p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex[J]. J Biol Chem, 2010, 285(37): 28980-28990.DOI: 10.1074/jbc.M110.139824.