The study on the association between dietary pattern and the incidence of hypertension in different genders in Shanxi Province
-
摘要:
目的 按性别分层探讨膳食模式与高血压的关系。 方法 采用多阶段分层随机整群抽样的方法,对山西省2 667名男性和2 982名女性开展膳食营养调查,通过包含64个食物组的食物频率调查问卷(food frequency questionnaire,FFQ)评估各食物的摄入量,并用因子分析法提取并命名膳食模式。在不同性别人群中,采用Logistic回归分析模型分析高血压与膳食模式的关系。 结果 男性提取出4个膳食模式,分别是高蛋白模式、高脂甜食模式、谷薯腌菜模式、蔬菜水果模式;女性提取出5个膳食模式,分别是低碳水化合物模式、谷物蔬菜模式、高蛋白模式、高脂甜食模式、薯类腌菜模式。其中,有3个相似的膳食模式,分别为高蛋白模式、高脂甜食模式、谷薯腌菜模式。Logistic回归分析模型分析结果显示,男性高脂甜食模式OR=1.361(95% CI:1.069~1.732,P=0.012),女性低碳水化合物模式OR=1.357(95% CI:1.064~1.731,P=0.014)。 结论 不同性别人群膳食模式与高血压关系存在一定差异。其中,男性的高脂甜食模式和女性的低碳水化合物模式可能会增加高血压的患病风险。 Abstract:Objective The purpose of this study was to examined gender differences in the association between dietary patterns and the risk of hypertension. Methods A multistage stratified random cluster sampling method was used to carry out a dietary nutrition survey on 2 667 males and 2 982 females in Shanxi Province. The intake of each food was evaluated by food frequency questionnaire (FFQ) containing 64 food groups, and the dietary patterns were extracted and named by factor a-nalysis. Logistic regression model was used to analyze the relationship between hypertension and dietary patterns in different genders. Resultsc Four dietary patterns were derived in men:high protein pattern; high fat and sweet pattern; grain, potato and pickles pattern; vegetable and fruit pattern; Five dietary patterns were derived in women:low carbohydrate pattern; grain and vegetable pattern; high protein pattern; high fat and sweet pattern; potato pickles pattern. There are three similar dietary patterns:high protein pattern; high fat and sweet pattern; potato and pickles pattern. The results of the Logistic regression model analysis showed that OR=1.361(95% CI:1.069-1.732, P=0.012) for high fat and sweet pattern of man, OR=1.357(95% CI:1.064-1.731, P=0.014) for low carbohydrate pattern of woman. Conclusions The relationship between dietary patterns and hypertension is different between man and woman. High fat and sweet pattern of man and low carbohydrate pattern of woman may increase the risk of hypertension. -
Key words:
- Shanxi Province /
- Dietary pattern /
- Hypertension /
- Factor analysis /
- Gender
-
表 1 人口学特征的描述性统计及其与高血压的关系[n(%)]
Table 1. The descriptive statistics of demographic characteristics and their relationship with hypertension[n(%)]
因素 高血压 P值 是 否 年龄(岁) 0.931 18~ 693(20.9) 485(20.8) 45~ 1 300(39.3) 929(39.8) ≥60 1 319(39.8) 923(39.5) BMI(kg/m2) < 0.001 超重及肥胖a 1 834(55.4) 862(36.9) 偏瘦及正常b 1 478(44.6) 1 475(63.1) 吸烟 0.058 是 946(27.3) 548(25.0) 否 2 515(72.7) 1 640(75.0) 饮酒 0.063 是 674(20.4) 429(18.4) 否 2 638(79.60) 1 908(81.60) 工作 0.001 无工作 386(11.7) 230(9.9) 脑力劳动 43(1.3) 68(2.9) 轻体力劳动 1 209(36.5) 996(42.7) 重体力劳动 1 671(50.5) 1 041(44.6) 婚姻 < 0.001 单身 144(4.4) 140(6.0) 已婚 2 964(89.7) 2 114(90.9) 离异 198(6.0) 72(3.1) 教育程度 < 0.001 小学及以下 1 433(44.2) 757(34.6) 中学 1 776(54.8) 1 370(62.7) 本科及以上 31(1.0) 58(2.7) 居住地 0.010 城市 833(25.2) 519(22.2) 农村 2 478(74.8) 1 818(77.8) 每日锻炼时间(x±s,h) 26.39±39.54 28.12±41.35 0.115 注:a:超重及肥胖BMI≥24 kg/m2;b:偏瘦及正常BMI<24 kg/m2。 表 2 山西省男性人群获得的因子及因子载荷
Table 2. The factors and factor loadings obtained from the male population in Shanxi Province
因子1
高蛋白模式因子2
高脂甜食模式因子3
谷薯腌菜模式因子4
蔬菜水果模式大米 0.629 畜肉 0.627 菌藻类 0.452 水产品 0.438 蛋类 0.412 奶类及其制品 0.405 加工肉 0.606 内脏 0.538 禽肉 0.508 坚果 0.474 油炸面食 0.427 甜食类 0.428 醋 杂粮 0.664 薯类 0.571 小麦类 0.526 腌制菜 0.516 豆类 0.378 蔬菜 0.751 水果 0.581 表 3 山西省女性人群获得的因子及因子载荷
Table 3. The factors and factor loadings obtained from the female population in Shanxi Province
因子1
低碳水化合物模式因子2
谷物蔬菜模式因子3
高蛋白模式因子4
高脂甜食模式因子5
薯类腌菜模式禽肉 0.671 菌藻类 0.630 加工肉 0.542 水产品 0.537 坚果 0.493 杂粮 0.698 大米 0.561 小麦 0.520 豆类 0.404 蔬菜 0.380 蛋类 0.748 奶及其制品 0.724 畜肉 0.415 0.423 水果 甜食 0.744 油炸面食 0.728 内脏 0.473 醋 腌制菜 0.734 薯类 0.663 表 4 山西省男性不同膳食模式的人口学特征分布
Table 4. The population characteristic distribution of different dietary patterns of the male population in Shanxi Province
人口学特征 高蛋白模式(%) P值 高脂甜食模式(%) P值 谷薯腌菜模式(%) P值 蔬菜水果模式(%) P值 Q1(低) Q4(高) Q1(低) Q4(高) Q1(低) Q4(高) Q1(低) Q4(高) 年龄(岁) 0.264 0.020 0.011 0.723 18~ 18.6 24.1 24.7 19.6 21.7 22.9 20.9 21.8 45~ 43.5 38.8 40.0 39.1 38.8 41.1 41.6 36.8 ≥60 37.9 37.0 35.2 41.2 39.4 36.0 37.5 41.4 BMI(kg/m2) 0.096 0.751 0.001 < 0.001 超重及肥胖a 58.6 53.5 53.8 55.5 49.3 60.1 63.8 50.5 偏瘦及正常b 41.4 46.5 46.2 44.5 50.7 39.9 36.2 49.5 吸烟 0.054 < 0.001 0.001 0.130 是 33.4 40.6 42.3 31.0 41.2 31.0 33.2 39.2 否 66.6 59.4 57.7 69.0 58.8 69.0 66.8 60.8 饮酒 0.274 < 0.001 0.496 0.045 是 63.4 60.0 71.4 50.7 60.6 59.5 59.9 58.4 否 36.6 40.0 28.6 49.3 39.4 40.5 40.1 41.6 工作 < 0.001 0.001 < 0.001 无工作 6.3 18.6 11.3 9.9 16.3 7.1 6.6 15.4 0.006 脑力劳动 1.5 3.3 1.2 3.6 3.4 1.7 2.4 2.0 轻体力劳动 28.8 33.5 24.4 35.2 38.5 24.0 30.8 28.3 重体力劳动 63.4 44.6 63.2 51.3 41.7 67.3 60.2 54.4 婚姻 < 0.001 0.005 0.830 < 0.001 单身 7.1 6.2 6.3 7.8 7.3 6.0 12.5 3.5 已婚 89.3 91.0 87.4 90.1 89.4 91.7 84.2 93.5 离异 3.6 2.9 6.3 2.1 3.3 2.3 3.3 3.0 教育程度 < 0.001 < 0.001 < 0.001 < 0.001 小学及以下 40.7 26.1 41.4 27.3 27.7 39.4 43.5 25.2 中学 58.7 69.4 57.4 69.9 68.5 60.0 55.8 71.5 本科及以上 0.6 4.5 1.2 2.7 3.9 0.6 0.6 3.3 居住地 < 0.001 < 0.001 < 0.001 < 0.001 城市 64.9 58.0 78.7 59.5 58.0 74.1 79.1 59.3 农村 35.1 42.0 21.3 40.5 42.0 25.9 20.9 40.7 每日锻炼时间(x±s,h) 23.88±41.53 30.9±41.85 0.005 26.79±39.78 30.65±44.07 0.373 26.39±40.08 31.18±45.70 0.082 28.70±43.25 30.19±41.67 0.707 注:a:超重及肥胖BMI≥24 kg/m2;b:偏瘦及正常BMI<24 kg/m2。 表 5 山西省女性不同膳食模式的人口学特征分布
Table 5. The population characteristic distribution of different dietary patterns of the male population in Shanxi Province
人口学特征 低碳水化合物模式(%) P值 谷物蔬菜模式(%) P值 高蛋白模式(%) P值 高脂甜食模式(%) P值 薯类腌菜模式(%) P值 Q1(低) Q4(高) Q1(低) Q4(高) Q1(低) Q4(高) Q1(低) Q4(高) Q1(低) Q4(高) 年龄(岁) 0.264 0.141 0.890 0.590 0.364 18~ 23.1 21.2 22.5 21.7 22.1 22.3 21.7 22.6 24.0 22.1 45~ 40.9 40.5 42.5 36.2 40.8 38.6 37.8 41.1 38.8 40.1 ≥60 36.1 38.3 35.0 42.1 37.1 39.1 40.5 36.4 37.2 37.7 BMI(kg/m2) 0.610 0.207 0.647 0.255 0.257 超重及肥胖a 47.9 50.7 53.2 49.2 50.0 50.5 47.1 52.2 47.9 52.9 偏瘦及正常b 52.1 49.3 46.8 50.8 50.0 49.5 52.9 47.8 52.1 47.1 吸烟 0.012 0.760 0.346 0.729 0.044 是 96.4 98.8 97.9 97.5 97.1 98.4 98.1 98.0 98.4 96.5 否 3.6 1.2 2.1 2.5 2.9 1.6 1.9 2.0 1.6 3.5 饮酒 0.004 0.878 0.021 0.636 0.687 是 98.4 95.8 97.5 97.5 97.7 96.1 97.1 97.4 97.2 97.4 否 1.6 4.2 2.5 2.5 2.3 3.9 2.9 2.6 2.8 2.6 工作 < 0.001 0.003 < 0.001 < 0.001 0.001 无工作 6.0 19.2 7.5 11.5 6 18.5 14.1 12.5 15.7 7.9 脑力劳动 0.7 1.5 2.5 1.1 1.1 1.5 0.9 2.6 1.9 1.7 轻体力劳动 46.5 48.6 55.2 41.4 47.3 44.9 41.3 50.9 45.8 50.2 重体力劳动 46.8 30.7 34.7 46.0 45.6 35.1 43.7 34.1 36.6 40.1 婚姻 < 0.001 0.789 0.139 < 0.001 0.946 单身 2.8 3.9 4.7 3.0 4.0 2.7 1.5 7.0 3.6 3.1 已婚 88.2 92.8 88.7 91.7 90.0 90.6 93.0 87.7 90.3 91.0 离异 9.0 3.2 6.6 5.4 5.9 6.7 5.5 5.3 6.0 5.9 教育程度 < 0.001 0.263 < 0.001 < 0.001 < 0.001 小学及以下 61.4 29.1 48.8 44.3 55.8 37.5 42.4 41.3 38.5 54.0 中学 38.1 66.7 49.1 53.8 42.9 59.5 55.8 55.7 57.8 45.3 本科及以上 0.4 4.2 2.1 1.9 1.3 3.0 1.8 3.0 3.7 0.7 居住地 < 0.001 0.686 < 0.001 0.119 0.015 城市 78.0 48.3 63.0 65.3 71.7 54.6 63.3 63.0 58.8 65.1 农村 22.0 51.7 37.0 34.7 28.3 45.4 36.7 37.0 41.2 34.9 每日锻炼时间(x±s,h) 21.92±37.49 30.50±40.97 < 0.001 26.37±39.78 25.82±39.60 0.888 21.22±38.14 28.76±37.27 0.001 28.47±39.68 23.70±37.60 < 0.001 23.33±37.08 28.96±38.87 0.041 注:a:超重及肥胖BMI≥24 kg/m2;b:偏瘦及正常BMI<24 kg/m2 表 6 不同性别人群膳食模式与高血压风险的关系
Table 6. The association between the dietary patterns and the risk of hypertension in different genders
性别 膳食模式 Q1 Q2 Q3 Q4 OR(95% CI)值 P值 OR(95% CI)值 P值 OR(95% CI)值 P值 男 高蛋白模式 1.000 0.799(0.633~1.007) 0.058 0.923(0.729~1.170) 0.508 0.878(0.683~1.128) 0.308 高脂甜食模式 1.000 1.178(0.928~1.495) 0.177 1.308(1.033~1.656) 0.026 1.361(1.069~1.732) 0.012 谷薯腌菜模式 1.000 1.027(0.812~1.298) 0.824 0.976(0.771~1.236) 0.842 1.096(0.861~1.395) 0.457 蔬菜水果模式 1.000 1.044(0.826~1.320) 0.719 0.922(0.728~1.167) 0.497 1.145(0.899~1.460) 0.273 女 低碳水化合物模式 1.000 1.266(1.015~1.579) 0.036 1.277(1.019~1.600) 0.034 1.357(1.064~1.731) 0.014 谷物蔬菜模式 1.000 0.895(0.716~1.118) 0.328 0.951(0.758~1.191) 0.660 0.808(0.643~1.015) 0.067 高蛋白模式 1.000 0.827(0.663~1.031) 0.091 0.859(0.685~1.077) 0.188 0.968(0.767~1.222) 0.785 高脂甜食模式 1.000 0.977(0.777~1.228) 0.840 0.979(0.777~1.233) 0.857 1.075(0.855~1.351) 0.538 薯类腌菜模式 1.000 0.849(0.677~1.064) 0.154 0.886(0.707~1.110) 0.292 0.827(0.660~1.036) 0.098 -
[1] Marczak L, Williams J, Loeffler M, et al. Global deaths attributable to high systolic blood pressure, 1990-2016[J]. JAMA, 2018, 319(21):2163. DOI: 10.1001/jama.2018.5119. [2] NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015:a pooled analysis of 1479 population-based measurement studies with 19.1 million participants[J]. Lancet, 2017, 389(10064):37-55. DOI: 10.1016/S0140-6736(16)31919-5. [3] World Health Organization. Global health observatory (GHO) data: blood pressure[EB/OL]. (2017)[2020-01-10]. https://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence/en/. [4] Wang Z, Chen Z, Zhang L, et al. Status of hypertension in China:results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22):2344-2356. DOI: 10.1161/CIRCULATIONAHA.117.032380. [5] Nettleton JA, Polak JF, Tracy R, et al. Dietary patterns and incident cardiovascular disease in the multi-ethnic study of atherosclerosis[J]. Am J Clin Nutr, 2009, 90(3):647-654. DOI: 10.3945/ajcn.2009.27597. [6] Mohanlal V, Parsa A, Weir MR. Role of dietary therapies in the prevention and treatment of hypertension[J]. Nat Rev Nephrol, 2012, 8(7):413-422. DOI: 10.1038/nrneph.2012.91. [7] Kant KA. Dietary patterns:biomarkers and chronic disease risk[J]. Appl Physiol Nutr Metab, 2010, 35(2):199-206. DOI: 10.1139/H10-005. [8] Blumenthal JA, Babyak MA, Hinderliter A, et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure:the encore study[J]. Arch Intern Med, 2010, 170(2):126-135. DOI: 10.1001/archinternmed.2009.470. [9] Khalesi S, Sharma S, Irwin C, et al. Dietary patterns, nutrition knowledge and lifestyle:associations with blood pressure in a sample of Australian adults (the Food BP study)[J]. J Hum Hypertens, 2016, 30(10):581-590. DOI: 10.1038/jhh.2016.22. [10] Song S, Kim J, Kim J. Gender differences in the association between dietary pattern and the incidence of hypertension in middle-aged and older adults[J]. Nutrients, 2018, 10(2):252. DOI: 10.3390/nu10020252. [11] Xu SH, Qiao N, Huang JJ, et al. Gender differences in dietary patterns and their association with the prevalence of metabolic syndrome among Chinese:a cross-sectional study[J]. Nutrients, 2016, 8(4):180. DOI: 10.3390/nu8040180. [12] Lorenzo-Seva U, Berge J. Tucker's congruence coefficient as a meaningful index of factor similarity[J]. Methodology, 2006, 2(2):57-64. DOI: 10.1027/1614-2241.2.2.57. [13] 杨月欣, 王光亚, 潘兴.中国食物成分表[M].北京:北京大学医学出版社, 2009.Yang YX, Wang GY, Pang X. China food composition[M]. Beijing:Peking University Medical Press, 2009. [14] Reedy J, Wirfalt E, Flood A, et al. Comparing 3 dietary pattern methods——cluster analysis, factor analysis, and index analysis——with colorectal cancer risk:the NIH-AARP diet and health study[J]. Am J Epidemiol, 2010, 171(4):479-487. DOI: 10.1093/aje/kwp393. [15] Zheng PF, Shu L, Zhang XY, et al. Association between dietary patterns and the risk of hypertension among Chinese:a cross-sectional study[J]. Nutrients, 2016, 8(4):239. DOI: 10.3390/nu8040239. [16] Vergnaud AC, Norat T, Romaguera D, et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study[J]. Am J Clin Nutr, 2010, 92(2):398-407. DOI: 10.3945/ajcn.2009.28713. [17] Brown IJ, Tzoulaki I, Candeias V, et al. Salt intakes around the world:implications for public health[J]. Int J Epidemiol, 2009, 38(3):791-813. DOI: 10.1093/ije/dyp139. [18] Jalal DI, Smits G, Johnson RJ, et al. Increased fructose associates with elevated blood pressure[J]. J Am Soc Nephrol, 2010, 21(9):1543-1549. DOI: 10.1681/ASN.2009111111. [19] DiNicolantonio JJ, Lucan SC. The wrong white crystals:not salt but sugar as aetiological in hypertension and cardiometabolic disease[J]. Open Heart, 2014, 1(1):e000167-e. DOI: 10.1136/openhrt-2014-000167. [20] DiNicolantonio JJ, O'Keefe JH. Hypertension due to toxic white crystals in the diet:should we blame salt or sugar?[J]. Prog Cardiovasc Dis, 2016, 59(3):219-225. DOI: 10.1016/j.pcad.2016.07.004. [21] Wang L, Gaziano JM, Liu S, et al. Whole- and refined-grain intakes and the risk of hypertension in women[J]. Am J Clin Nutr, 2007, 86(2):472-479. DOI: 10.1093/ajcn/86.2.472. [22] Cardillo C, Nambi SS, Kilcoyne CM, et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm[J]. Circulation, 1999, 100(8):820-825. DOI: 10.1161/01.cir.100.8.820. [23] Steffen LM, Jacobs DR, Murtaugh MA, et al. Whole grain intake is associated with lower body mass and greater insulin sensitivity among adolescents[J]. Am J Epidemiol, 2003, 158(3):243-250. DOI: 10.1093/aje/kwg146. [24] Borneo R, León AE. Whole grain cereals:functional components and health benefits[J]. Food Funct, 2012, 3(2):110-119. DOI: 10.1039/c1fo10165j. [25] Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation[J]. Gut microbes, 2014, 5(2):202-207. DOI: 10.4161/gmic.27492. [26] Schatzkin A, Subar AF, Thompson FE, et al. Design and serendipity in establishing a large cohort with wide dietary intake distributions:the national institutes of health American association of retired persons diet and health study[J]. Am J Epidemiol, 2001, 154(12):1119-1125. DOI: 10.1093/aje/154.12.1119. [27] Pechère-Bertschi A, Burnier M. Female sex hormones, salt, and blood pressure regulation[J]. Am J Hypertens, 2004, 17(10):994-1001. DOI: 10.1016/j.amjhyper.2004.08.009.