• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用iTRAQ技术对动式染尘矽肺大鼠肺组织差异蛋白的定量分析

朱莹 段雨霞 程琦云 姚婧昕 徐洪 袁聚祥

朱莹, 段雨霞, 程琦云, 姚婧昕, 徐洪, 袁聚祥. 应用iTRAQ技术对动式染尘矽肺大鼠肺组织差异蛋白的定量分析[J]. 中华疾病控制杂志, 2020, 24(7): 824-829. doi: 10.16462/j.cnki.zhjbkz.2020.07.015
引用本文: 朱莹, 段雨霞, 程琦云, 姚婧昕, 徐洪, 袁聚祥. 应用iTRAQ技术对动式染尘矽肺大鼠肺组织差异蛋白的定量分析[J]. 中华疾病控制杂志, 2020, 24(7): 824-829. doi: 10.16462/j.cnki.zhjbkz.2020.07.015
ZHU Ying, DUAN Yu-xia, CHENG Qi-yun, YAO Jing-xin, XU Hong, YUAN Ju-xiang. Quantitative analysis of differential proteins in lung tissue of silicosis rats by using iTRAQ profile[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(7): 824-829. doi: 10.16462/j.cnki.zhjbkz.2020.07.015
Citation: ZHU Ying, DUAN Yu-xia, CHENG Qi-yun, YAO Jing-xin, XU Hong, YUAN Ju-xiang. Quantitative analysis of differential proteins in lung tissue of silicosis rats by using iTRAQ profile[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(7): 824-829. doi: 10.16462/j.cnki.zhjbkz.2020.07.015

应用iTRAQ技术对动式染尘矽肺大鼠肺组织差异蛋白的定量分析

doi: 10.16462/j.cnki.zhjbkz.2020.07.015
基金项目: 

国家科技部重点研发计划资助项目 2016YFC0900605

河北省医学科学研究课题 20190108

唐山市科技计划 18130206a

详细信息
    通讯作者:

    袁聚祥, E-mail:yuanjx@ncst.edu.cn

  • 中图分类号: R181.1

Quantitative analysis of differential proteins in lung tissue of silicosis rats by using iTRAQ profile

Funds: 

Research and Development Program Funded by the Ministry of Science and Technology of the People's Republic of China 2016YFC0900605

Medical Science Research Project of Hebei Province 20190108

Science and Technology Project of Tangshan 18130206a

More Information
  • 摘要:   目的   筛选动式染尘矽肺大鼠肺组织差异蛋白并在动物体内及体外中验证,以期为矽肺早期诊断及相关机制研究提供新思路。   方法   构建动式染尘矽肺大鼠动物模型,采用同位素标记相对和绝对定量(isobaric tags for relative and absolute quantification,iTRAQ)技术联合液相色谱-串联质谱(liquid chromatography-trandem mass spectrometry,LC-MS/MS)技术筛选肺组织中的差异蛋白。免疫印迹试验检测差异蛋白在动物模型肺组织和SiO2诱导的小鼠Ⅱ型肺泡上皮细胞中的表达。   结果   共得到471个差异蛋白,其中252个上调蛋白,219个下调蛋白。差异倍数>1.5,共有28种差异表达蛋白,其中上调差异蛋白20种。在动物模型肺组织及SiO2诱导的小鼠Ⅱ型肺泡上皮细胞中Factor B、PTPN2、VRK1和MOT4蛋白表达上调,差异均具有统计学意义(均有P < 0.05)。   结论   差异蛋白Factor B、PTPN2、VRK1和MOT4蛋白可能是矽肺纤维化进程中的关键蛋白,为矽肺纤维化的研究提供了新靶点。
  • 图  1  矽肺动物模型肺组织差异蛋白GO分析结果

    注:A:细胞组分分析;B:分子功能分析;C:生物过程分析。

    Figure  1.  Go analysis of the difference protein in lung tissue of silicosis animal models

    图  2  尘肺动物模型肺组织差异蛋白KEGG分析

    注:A:KEGG分析;B:相互作用网络分析。

    Figure  2.  KEGG analysis of differential protein in lung tissue of pneumoconiosis animal models

    图  3  矽肺动物模型肺组织验证结果

    注:A:体内验证Western条带图;B:差异蛋白统计图。

    Figure  3.  Validation results of lung tissue in silicosis animal models

    图  4  SiO2诱导的小鼠Ⅱ型肺泡上皮细胞验证结果

    注:A:体外验证Western条带图;B:差异蛋白统计图。

    Figure  4.  Validation results of SiO2 induced typeⅡ alveolar epithelial cells in mice

  • [1] 中华人民共和国国家卫生健康委员会. 2017年我国卫生健康事业发展统计公报[EB/OL]. (2018-06-12)[2019-12-12]. http://www.nhfpc.gov.cn/guihuaxxs/s10743/201806/44e3cdfe11fa4c7f928c879d435b6a18.shtml.

    National Health and Health Commission of the People's Republic of China. 2017 statistical bulletin of China's health development[EB/OL]. (2018-06-12)[2019-12-12]. http://www.nhfpc.gov.cn/guihuaxxs/s10743/201806/44e3cdfe11fa4c7f928c879d435b6a18.shtml.
    [2] 吴二丰, 张勤丽, 李海学.尘肺病与现代影像学技术[J].中国工业医学杂志, 2013, 16(12):2026-2028. DOI:10.11723/mtgyyx 1007-9564201312044.

    Wu EF, Zhang QL, Li HX. Pneumoconiosis and modern imaging technology[J]. Chin J Industrial Med, 2013, 16(12):2026-2028. DOI:10.11723/mtgyyx 1007-9564201312044.
    [3] Chu C, Yan N, Du Y, et al. iTRAQ-based proteomic analysis reveals the accumulation of bioactive compounds in Chinese wild rice (Zizania latifolia) during germination[J]. Food chemistry, 2019, 289:635-644. DOI: 10.1016/j.foodchem.2019.03.092.
    [4] Martyniuk CJ, Alvarez S, Denslow ND. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology[J]. Ecotoxicol Environ Saf, 2012, 76(2):3-10. DOI: 10.1016/j.ecoenv.2011.09.020.
    [5] Jiang Z, Zhang CH, Gan L, et al. iTRAQ-based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric cancer[J]. Proteom Clin Appl, 2019, 13(4):1-8. DOI: 10.1002/prca.201800038.
    [6] Du C, Weng Y, Lou J, et al. Isobaric tags for relative and absolute quantitationbased proteomics reveals potential novel biomarkers for the early diagnosis of acute myocardial infarction within 3 h[J]. Int J Mol Med, 2019, 43(5):1991-2004. DOI: 10.3892/ijmm.2019.4137.
    [7] Zhou FY, Chen XQ, Chen GX, et al. Identification of SAA and ACTB as potential biomarker of patients with severe HFMD using iTRAQ quantitative proteomics[J]. Clin Biochem, 2019, 67:1-6. DOI: 10.1016/j.clinbiochem.2019.02.011.
    [8] Arora A, Patil V, Kundu P, et al. Serum biomarkers identification by iTRAQ and verification by MRM:S100A8/S100A9 levels predict tumor-stroma involvement and prognosis in Glioblastoma[J]. Sci Rep, 2019, 9(1):2749. DOI: 10.1038/s41598-019-39067-8.
    [9] Fu R, Li Q, Fan R, et al. iTRAQ-based secretome reveals that SiO2 induces the polarization of RAW264.7 macrophages by activation of the NOD-RIP2-NF-kappaB signaling pathway[J]. Environ Toxicol Pharmacol, 2018, 63:92-102. DOI: 10.1016/j.etap.2018.08.010.
    [10] Na M, Hong X, Fuyu J, et al. Proteomic profile of TGF-beta treated lung fibroblasts identifies novel markers of activated fibroblasts in the silica exposed rat lung[J]. Exp Cell Res, 2019, 375(2):1-9. DOI: 10.1016/j.yexcr.2019.01.010.
    [11] 高学敏, 耿玉聪, 李世峰, 等.动式染尘构建矽肺大鼠模型及ACE2-Ang(1-7)-Mas轴动态变化规律[J].医学研究生学报, 2016, 29(12):1276-1280. DOI: 10.16571/j.cnki.1008-8199.2016.12.010.

    Gao XM, Geng YC, Li SF, et al. Establishment of a rat silicosis model by dynamic silica dust exposure and its dynamic variation rule of ACE2-Ang(1-7)-Mas axis[J]. J Med Postgra, 2016, 29(12):1276-1280. DOI: 10.16571/j.cnki.1008-8199.2016.12.010.
    [12] Mi H, Muruganujan A, Casagrande JT, et al. Large-scale gene function analysis with the PANTHER classification system[J]. Nat Protoc, 2013, 8(8):1551-1566. DOI: 10.1038/nprot.2013.092.
    [13] Zhang Y, Wu XF, Tao WA. Characterization and applications of extracellular vesicle proteome with post-translational modifications[J]. Trends Analyt Chem, 2018, 107:21-30.DOI: 10.1016/j.trac.2018.07.014.
    [14] Viczian A, Adam E, Staudt AM, et al. Differential phosphorylation of the N-terminal extension regulates phytochrome B signaling[J]. New Phytologist, 2020, 225(4):1635-1650. DOI: 10.1111/nph.16243.
    [15] Elagamey E, Narula K, Chakraborty N, et al. Extracellular matrix proteome:isolation of ECM proteins for proteomics studies[J]. Methods in Molecular Biology, 2019;2057:155-172. DOI: 10.1007/978-1-4939-9790-9_14.
    [16] Li G, Eckert MA, Chang JW, et al. Ultrasensitive, multiplexed chemoproteomic profiling with soluble activity-dependent proximity ligation[J]. Proc Natl Acad Sci USA, 2019, 116(43):21493-21500. DOI: 10.1073/pnas.1912934116.
    [17] 朱琰琰, 罗执芬, 崔永霞, 等.人类蛋白组学草图的肺癌分子标记物初探[J].生物信息学, 2016, 14(1):43-48. DOI:10. 3969/j.issn.1672-5565.2016.01.08.

    Zhu YY, Luo ZF, Cui YX, et al. Pilot study on biomarkers for lung cancer based on the draft of human proteome[J]. Chinese Journal of Bioinformatics, 2016, 14(1):43-48. DOI: 10.3969/j.issn.1672-5565.2016.01.08.
    [18] Ye H, Sun L, Huang X, et al. A proteomic approach for plasma biomarker discovery with 8-plex iTRAQ labeling and SCX-LC-MS/MS[J]. Mol Cell Biochem, 2010, 343(1-2):91-99. DOI: 10.1007/s11010-010-0502-x.
    [19] Akiyama N, Hozumi H, Isayama T, et al. Clinical significance of serum S100 calcium-binding protein A4 in idiopathic pulmonary fibrosis[J]. Respirology, 2020, 25(7):743-749. DOI: 10.1111/resp.13707.
    [20] Liu H, Yu H, Cao Z, et al. Kaempferol modulates autophagy and alleviates silica-induced pulmonary fibrosis[J]. DNA Cell Biol, 2019, 38(12):1418-1426. DOI: 10.1089/dna.2019.4941.
    [21] Li N, Feng F, Wu K, et al. Inhibitory effects of astragaloside IV on silica-induced pulmonary fibrosis via inactivating TGF-beta1/Smad3 signaling[J]. Biomed Pharmacother, 2019, 119:109387. DOI: 10.1016/j.biopha.2019.109387.
    [22] 刘燕, 耿玉聪, 徐洪, 等. Ac-SDKP调控Gαs/Gαi信号抑制大鼠矽肺纤维化的作用[J].西安交通大学学报(医学版), 2017, 38(1):24-28. DOI: 10.7652/jdyxb201701005.

    Liu Y, Geng YC, Xu H, et al.Ac-SDKP inhibits silicosis fibrosis in rats by regulating Gαs/Gαi signaling[J]. J Xi'an Med Univ, 2017, 38(1):24-28. DOI: 10.7652/jdyxb201701005.
    [23] Wu M, Chen MH, Jing Y, et al. The C-terminal tail of polycystin-1 regulates complement factor B expression by signal transducer and activator of transcription 1[J]. Am J Physiol Renal Physiol, 2016, 310(11):1284-1294. DOI: 10.1152/ajprenal.00428.2015.
    [24] Tong H, Liu XH, Li T, et al. INTS8 accelerates the epithelial-to-mesenchymal transition in hepatocellular carcinoma by upregulating the TGF-beta signaling pathway[J]. Cancer Manag Res, 2019, 11:1869-1879. DOI: 10.2147/cmar.s184392.
    [25] Mon AM, MacKinnon AC JR, Traktman P. Overexpression of the VRK1 kinase, which is associated with breast cancer, induces a mesenchymal to epithelial transition in mammary epithelial cells[J]. PLoS One, 2018, 13(9):e0203397. DOI: 10.1371/journal.pone.0203397.
    [26] Zhang S, Xu W, Wang H, et al. Inhibition of CREB-mediated ZO-1 and activation of NF-κB induced IL-6 by colonic epithelial MCT4 destroys intestinal barrier function[J]. Cell Prolif, 2019, 52(6):e12673. DOI: 10.1111/cpr.12673.
    [27] 杨萌, 姚三巧.胶原样结构巨噬细胞受体和上皮间质转化在矽肺发病机制中作用研究进展[J].中国职业医学, 2017, 44(6):371-375. DOI: 10.11763/j.issn.2095-2619.2017.03.027.

    Yang M, Yao SQ. Study advance in the role of collagen-like macrophage receptors andepithelial-mesenchymal transition in the pathogenesis of silicosis[J]. Chin Occup Med, 2017, 44(6):371-375. DOI: 10.11763/j.issn.2095-2619.2017.03.027.
  • 加载中
图(4)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  150
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 修回日期:  2020-02-03
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回