• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肺炎克雷伯菌中CRISPR调控耐药机制及其分布特征与分离地点的关系

崔聪聪 梁文娟 杨海燕 陈帅印 龙金照 段广才

崔聪聪, 梁文娟, 杨海燕, 陈帅印, 龙金照, 段广才. 肺炎克雷伯菌中CRISPR调控耐药机制及其分布特征与分离地点的关系[J]. 中华疾病控制杂志, 2020, 24(8): 939-945. doi: 10.16462/j.cnki.zhjbkz.2020.08.015
引用本文: 崔聪聪, 梁文娟, 杨海燕, 陈帅印, 龙金照, 段广才. 肺炎克雷伯菌中CRISPR调控耐药机制及其分布特征与分离地点的关系[J]. 中华疾病控制杂志, 2020, 24(8): 939-945. doi: 10.16462/j.cnki.zhjbkz.2020.08.015
CUI Cong-cong, LIANG Wen-juan, YANG Hai-yan, CHEN Shuai-yin, LONG Jin-zhao, DUAN Guang-cai. The mechanism of CRISPR-mediated drug resistance and the relationship between the characteristics of CRISPR and isolation site in Klebsiella pneumoniae[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(8): 939-945. doi: 10.16462/j.cnki.zhjbkz.2020.08.015
Citation: CUI Cong-cong, LIANG Wen-juan, YANG Hai-yan, CHEN Shuai-yin, LONG Jin-zhao, DUAN Guang-cai. The mechanism of CRISPR-mediated drug resistance and the relationship between the characteristics of CRISPR and isolation site in Klebsiella pneumoniae[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(8): 939-945. doi: 10.16462/j.cnki.zhjbkz.2020.08.015

肺炎克雷伯菌中CRISPR调控耐药机制及其分布特征与分离地点的关系

doi: 10.16462/j.cnki.zhjbkz.2020.08.015
基金项目: 

国家科技重大专 2018ZX10301407

详细信息
    通讯作者:

    段广才, E-mail:gcduan@zzu.edu.cn

  • 中图分类号: R378

The mechanism of CRISPR-mediated drug resistance and the relationship between the characteristics of CRISPR and isolation site in Klebsiella pneumoniae

Funds: 

National Science and Technology Specific Projects 2018ZX10301407

More Information
  • 摘要:   目的  了解呼吸道标本肺炎克雷伯菌中成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)对耐药的调控机制,并分析其CRISPR分布特征与分离地点的关系。  方法  收集并提取120株肺炎克雷伯菌的基因组DNA,通过扩增CRISPR/Cas(clustered regularly interspaced short palindromic repeats/CRISPR-associated)系统相关基因CRISPR 1、CRISPR 2来确定CRISPR阳性菌株。CRISPR阳性菌株的耐药表型用BD Phoenix-100细菌鉴定仪进行检测,利用CRISPR Target寻找间隔序列同源噬菌体或质粒,并在Center for Genomic Epidemiology上查找同源质粒或噬菌体的耐药信息并检测间隔序列所在菌株的耐药基因,分析两者携带耐药基因的关系。采用CRISPR Finder分析CRISPR并运用多序列比对分析间隔序列的一致性。  结果  CRISPR1、CRISPR2阳性率分别为12.50%和13.33%;间隔序列同源质粒与其所在菌株均携带共同的耐药基因,且菌株的耐药表型与其携带的耐药基因高度符合;相同地点菌株的CRISPR分布具有极高相似性。  结论  肺炎克雷伯菌通过将外来质粒的耐药基因片段整合到菌株的基因组中实现对菌株耐药性的调控;CRISPR中间隔序列的分布与菌株分离地点密切相关,为临床治疗和感染控制工作提供理论依据。
  • 表  1  耐药基因引物信息

    Table  1.   Primers of drug-resistant genes

    耐药基因 引物序列 长度
    (bp)
    退火
    温度(℃)
    aac(6')-Ib ATGACTGAGCATGACCTTGC
    TTAGGCATCACTGCGTGTTC
    519 53
    aac(6')-Ib-cr ATGAGCAACGCAAAAACAAAGTTAGGC
    GTGAAACCCAACATACCCCTGA
    600 53
    blaOXA ATGAAAAACACAATACATATCAACTTCG
    TTATAAATTTAGTGTGTTTAGAATGGTGATCG
    831 46
    blaSHV TCTCCCTGTTAGCCACCCTG
    CCACTGCAGCAGCTGC
    529 56
    catB3 ATGACCAACTACTTTGATAGCCCCT
    TTAGACGGCAAACTCGAGCCA
    633 53
    aadA2 ATGAGGGAAGCGGTGA
    TCATTTACCAACTGACTTGATGATCTC
    792 50
    sul1 CTAGGCATGATCTAACCCTCGGT
    CTAGGCATGATCTAACCCTCGGT
    927 53
    dfrA12 ATGAACTCGGAATCAGTACGCATTTAT
    TTAGCCGTTTCGACGCGC
    498 50
    aac(3')-IIa ATGCATACGCGGAAGGCAAT
    CTAACCGGAAGGCTCGCAAG
    861 53
    qnrB1 ATGACGCCATTACTGTATAAAAAAACA
    CTAACCAATCACCGCGATG
    681 47
    tetA GTGAAACCCAACATACCCCTGA
    TCAGCGATCGGCTCGTTG
    750 53
    catA1 ATGGAGAAAAAAATCACTGGATATACCACCGTTGAT
    TTACGCCCCGCCCTGCC
    630 55
    mph(A) ATGACCGTAGTCACGACCGC
    CTATATCGACGTTCGCTCATTCCG
    921 52
    下载: 导出CSV

    表  2  CRISPR1、CRISPR2在120株肺炎克雷伯菌中的检出率和间隔序列数目

    Table  2.   Detection rate and number of spacer sequences of CRISPR1 and CRISPR2 in 120 strains of Klebsiella pneumoniae

    CRISPR 间隔序列数目 菌株数 阳性率(%)
    CRISPR 1 7 1 12.50
    9 13
    12 1
    CRISPR 2 6 1 13.33
    11 13
    14 2
    下载: 导出CSV

    表  3  间隔序列同源质粒携带耐药基因情况

    Table  3.   Spacer sequence homologous plasmids carrying resistant genes

    间隔序列编号 所在菌株 间隔序列 同源质粒登记号 同源质粒上的耐药基因
    C1/(A1-A12)-CR2-24 C1 CCGCCGTTTAATCGCGGTGATGATATCCGGCA plasmid pUCLAOXA232-6(NZ_CP012567) aac(6')-Ib
    A1-A12 aac(6')-Ib-cr
    blaOXA, blaSHV
    catB3
    B1-CR1-11 B1 AGTTAAAGCGCCACCAGCTAAGCCTGTGCCGGT plasmid unnamed1(NZ_CP027613) aadA2,bla-SHV
    sul1,dfrA12
    B1-CR1-14 B1 TGAAGCCCAGCGGAATGGCCGGGAAAAATTTAT plasmid pCN1_1(NZ_CP015383) aac(6')-Ib
    aac(6')-Ib-cr
    aac(3')-IIa
    qnrB1, catB3
    blaOXA, dfrA12 tetA
    B2-CR1-25 B2 TGAAGCGTAGAAAAGCAGGCAGCTTTTACCCTGG plasmid pKPN-498(NZ_CP008829) aac(3')-IIa,aadA2, catA1, sul1, dfrA12, mph(A)
      注:C1/(A1-A12)-CR2-24表示菌株C1或菌株A1-A12的CRISPR2位点中第24个间隔序列;B1-CR1-11表示菌株B1的CRISPR1位点中第11个间隔序列;B1-CR1-14表示菌株B1的CRISPR1位点中第14个间隔序列;B2-CR1-25表示菌株B2的CRISPR1位点中第25个间隔序列。
    下载: 导出CSV

    表  4  间隔序列所在肺炎克雷伯菌携带耐药基因情况

    Table  4.   Drug-resistant genes carried by Klebsiella pneumoniae which spacer sequence located

    间隔序列编号所在菌株 耐药基因
    C1/(A1-A12)-CR2-24
       C1 bla-SHV, aac(6')-Ib, aac(6')-Ib-cr, catB3
       A1 bla-SHV, catB3
       A2 bla-SHV, catB3
       A3 bla-SHV, catB3
       A4 bla-SHV, catB3
       A5 bla-SHV, catB3
       A6 bla-SHV, catB3
       A7 bla-SHV, catB3
       A8 bla-SHV, catB3
       A9 bla-SHV, catB3
       A10 bla-SHV, catB3
       A11 bla-SHV, catB3
       A12
    B1-CR1-11
       B1 bla-SHV, aac(3')-IIa, tetA
    B1-CR1-14
       B1 bla-SHV, aac(3')-IIa, tetA
    B2-CR1-25
       B2 aac(3')-IIa, catA1, mph(A)
    下载: 导出CSV

    表  5  16株CRISPR阳性菌株耐药表型

    Table  5.   Drug resistance phenotypes of 16 CRISPR positive strains

    菌株
    编号
    氨苄
    西林
    氨曲南 环丙
    沙星
    左氧氟
    沙星
    哌拉
    西林
    头孢
    噻肟
    头孢
    唑林
    头孢
    吡肟
    头孢
    他啶
    亚胺
    培南
    美罗
    培南
    庆大
    霉素
    阿莫西
    林/克
    拉维酸
    氨苄西
    林/
    舒巴坦
    哌拉西
    林/他
    唑巴坦
    阿米
    卡星
    氯霉素 复方
    磺胺
    四环素
    C2 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 1 1 1
    C1 1 1 0 0 1 1 1 1 0 0 0 0 2 1 0 0 1 1 1
    B1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    B2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
    A10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
    A11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
    A12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0
       注:C1/(A1-A12)-CR2-24表示菌株C1或菌株A1-A12的CRISPR2位点中第24个间隔序列;B1-CR1-11表示菌株B1的CRISPR1位点中第11个间隔序列;B1-CR1-14表示菌株B1的CRISPR1位点中第14个间隔序列;B2-CR1-25表示菌株B2的CRISPR1位点中第25个间隔序列。
    下载: 导出CSV

    表  6  间隔序列一致性分析结果

    Table  6.   Results of spacer sequence consistency analysis

    菌株编号 CR1 CR2 CRISPR 1 CRISPR2
       C2 9 14 1-9 1-8 1-7 1-6 1-5 1-4 1-3 1-2 1-1 2-14 2-132-122-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1
       C1 0 11 2- -25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       B1 7 14 1-16 1-15 1-14 1-13 1-12 1-11 1-10 2 -39 2-38 2-37 2-36 2-35 2- 34 2-33 2-32 2-31 2-302-292-282-27 2-26
       B2 12 6 1-9 1-8 1-26 1-25 1-24 1-23 1-22 1-21 1-20 1-19 1-18 1-17 2-45 2-44 2-43 2-42 2-41 2-40
       Al 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A2 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A3 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A4 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A5 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A6 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 v 2- -25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A7 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28v 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A8 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A9 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A10 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A11 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       A12 9 11 1-9 1-8 1-7 1-6 1-30 1-29 1-5 1-28 1-27 2-25 2-24 2-23 2-22 2-21 2-20 2-19 2-18 2-17 2-16 2-15
       注:间隔序列用相应的编号代替:CRISPR 1中共30个完全不同的间隔序列,分别标记为1-1至1-30;CRISPR 2中共25个完全不同的间隔序列,分别标记为2-1至2-25。相同标记的均为完全相同的间隔序列。
    下载: 导出CSV
  • [1] Ostria-Hernández ML, Sánchez-Vallejo CJ, Ibarra JA, et al. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins(CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae [J]. BMC Res Notes, 2015, 8:332. DOI: 10.1186/s13104-015-1285-7.
    [2] 徐鑫鑫, 陈立凌, 田健美, 等. 2011-2018年苏州市住院儿童肺炎的常见病原分布及流行特征[J].中华疾病控制杂志, 2020, 24(3):264-268. DOI: 10.16462/j.cnki.zhjbkz.2020.03.004.

    Xu XX, Chen LL, Tian JM, et al. The distribution and flow of common causes of hospitalized children' pneumonia in Suzhou from 2011 to 2018 [J]. Chin J Dis Control Prev, 2020, 24(3):264-268. DOI: 10.16462/j.cnki.zhjbkz.2020.03.004.
    [3] 穆玉姣, 王若琳, 张白帆, 等. 2013-2017年河南省婴幼儿志贺菌流行特征与耐药分析[J].中华疾病控制杂志, 2019, 23(7):835-839. DOI: 10.16462/j.cnki.zhjbkz.2019.07.018.

    Mu YJ, Wang RL, Zhang BF, et al. Epidemiological characteristics and drug resistance surveillance of Shigella in infants and young children in Henan Province from 2013 to 2017 [J]. Chin J Dis Control Prev, 2019, 23(7):835-839. DOI: 10.16462/j.cnki.zhjbkz.2019.07.018.
    [4] 胡付品, 郭燕, 朱德妹, 等. 2016年中国CHINET细菌耐药性监测[J].中国感染与化疗杂志, 2017, 17(5):481-491. DOI: 10.16718/j.1009-7708.2017.05.001.

    Hu FP, Guo Y, Zhu DM, et al. CHINET surveillance of bacterial resistance across China: report of the results in 2016 [J]. Chin J Infect Chemother, 2017, 17(5):481-491. DOI: 10.16718/j.1009-7708.2017.05.001.
    [5] Makarova KS, Haft DT, Barrangou R, et al. Evolution and classification of the CRISPR-Cas system [J]. Nat Rev Microbiol, 2011, 9(6):467-477. DOI: 10.1038/nrmicro2577.
    [6] 张冰.志贺菌中CRISPR/Cas系统与其耐药关系的探讨[D].郑州: 郑州大学, 2016.

    Zhang B. Study on the relationship between CRISPR/Cas system and drug resistance in Shigella [D]. Zhengzhou: Zhengzhou University, 2016.
    [7] Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats [J]. Genome Biol, 2007, 8(4):R61. DOI: 10.1186/gb-2007-8-4-r61.
    [8] Shah SA, Hansen NR, Garrett RA. Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism [J]. Biochem Soc Trans, 2009, 37(Pt1):23-28. DOI: 10.1042/BST0370023.
    [9] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea [J]. Science, 2010, 327(5962):167-170. DOI: 10.1126/science.1179555.
    [10] Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea [J]. Nature, 2012, 482(7385):331-338. DOI: 10.1038/nature10886.
    [11] Lin TL, Pan YJ, Hsieh PF, et al. Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS Stimulation in Klebsiella pneumoniae [J]. Sci Rep, 2016, 6:31644. DOI: 10.1038/srep31644.
    [12] Wang PF, Zhang B, Duan GC, et al. Bioinformatics analyses of Shigella CRISPR structure and spacer classification [J]. World J Microbiol Bioterchnol, 2016, 32(3):38. DOI: 10.1007/s11274-015-2002-3.
    [13] Davision J. Genetic exchange between bacteria in the environment [J]. Plasmid, 1999, 42(2):73-91. DOI: 10.1006/plas.1999.1421.
    [14] Dutta C, Pan A. Horizontal gene transfer and bacterial diversity [J]. J Biosci, 2002, 27(1 Suppl 1):27-33. DOI: 10.1007/bf02703681.
    [15] Garneau JE, Dupuis Mè, Villion M, et al. The CRISPR/Cas bacterial immune sysytem cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468(7320):67-71. DOI: 10.1038/nature09523.
    [16] Jansen R, Embden JD, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol Microbiol, 2002, 43(6):1565-1575. DOI: 10.1046/j.1365-2958.2002.02839.x.
    [17] Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA [J]. Science, 2008, 322(5909):1843-1845. DOI: 10.1126/science.1165771.
    [18] Shen J, Lv L, Wang X, et al. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes [J]. J Basic Microbiol, 2017, 57(4):325-336. DOI: 10.1002/jobm.201600589.
    [19] 张冰, 王鹏飞, 段广才, 等. CRISPR/Cas系统间隔序列同源质粒耐药信息与志贺菌耐药的关系[J].中国病原生物学杂志, 2016, 11(10):881-887. DOI:10.13350/j.cjpb.161004.

    Zhang B, Wang PF, Duan GC, et al. Information on the drug resistance of plasmids that are homologous to spacers in a CRISPR/Cas system and its relationship to information on the drug resistance of Shigella [J]. Journal of Parasitic Biology. 2016, 11(10):881-887. DOI: 10.13350/j.cjpb.161004.j.cjpb.161004.
    [20] 王鹏飞, 王颖芳, 段广才, 等.志贺菌成簇的规律间隔的短回文重复序列系统结构特征的生物信息学分析[J].生物医学工程杂志, 2015, 32(2):343-349. DOI: 10.7507/1001-5515.20150063.

    Wang PF, Wang YF, Duan GC, et al. Bioinformatics analysis of clustered regularly interspaced short palindromic repeats in the genomes of Shigella [J]. Journal of Biomedical Engineering, 2015, 32(2):343-349. DOI: 10.7507/1001-5515.20150063.
    [21] Grissa I, Vergnaud G, Pourcel C. The CRISPR db database and tools to display CRISPRs and to generate dictionaries of spacers and repeats [J]. BMC Bioinformatics, 2007, 8:172. DOI: 10.1186/1471-2105-8-172.
    [22] Deveau H, Barrangou R, Garneau JE, et al. Phage response to CRISPR-encoded resisitance in Streptococcus thermophilus [J]. J Bacteriol, 2008, 190(4):1390-1400. DOI: 10.1128/JB.01412-07.
    [23] Bikard D, Hatoum-Aslan A, Mucida D, et al. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection [J]. Cell Host Microbe, 2012, 12(2):177-186. DOI: 10.1016/j.chom.2012.06.003.
  • 加载中
计量
  • 文章访问数:  418
  • HTML全文浏览量:  104
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-13
  • 修回日期:  2020-06-30
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回