• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间窗长短期记忆模型分析新型冠状病毒肺炎疫情

程宁 丁长松 高婉卿 刘佳俊

程宁, 丁长松, 高婉卿, 刘佳俊. 基于时间窗长短期记忆模型分析新型冠状病毒肺炎疫情[J]. 中华疾病控制杂志, 2021, 25(5): 577-582. doi: 10.16462/j.cnki.zhjbkz.2021.05.015
引用本文: 程宁, 丁长松, 高婉卿, 刘佳俊. 基于时间窗长短期记忆模型分析新型冠状病毒肺炎疫情[J]. 中华疾病控制杂志, 2021, 25(5): 577-582. doi: 10.16462/j.cnki.zhjbkz.2021.05.015
CHENG Ning, DING Chang-song, GAO Wan-qing, LIU Jia-jun. Analysis of COVID-19 outbreak based on Window-Time-LSTM Model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(5): 577-582. doi: 10.16462/j.cnki.zhjbkz.2021.05.015
Citation: CHENG Ning, DING Chang-song, GAO Wan-qing, LIU Jia-jun. Analysis of COVID-19 outbreak based on Window-Time-LSTM Model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(5): 577-582. doi: 10.16462/j.cnki.zhjbkz.2021.05.015

基于时间窗长短期记忆模型分析新型冠状病毒肺炎疫情

doi: 10.16462/j.cnki.zhjbkz.2021.05.015
基金项目: 

国家重点研发计划 2017YFC1703306

湖南省重点研发计划 2017SK2111

湖南省自然基金 2018JJ2301

湖南省教育厅重点项目 18A227

湖南省中医药科研计划重点课题 2020002

详细信息
    通讯作者:

    丁长松,E-mail: dingcs1975@hnucm.edu.cn

  • 中图分类号: R563.1;R181;TP183

Analysis of COVID-19 outbreak based on Window-Time-LSTM Model

Funds: 

National Key Research and Development Plan 2017YFC1703306

Key R & D Plan of Hunan Province 2017SK2111

Hunan Provincial Natural Resources Foundation 2018JJ2301

Key Project of Hunan Education Department 18A227

Key Subject of Hunan TCM Research Program 2020002

More Information
  • 摘要:   目的  提出一种新的网络模型以解决COVID-19出现初期认知不够、检测能力受限以及潜伏期长等因素导致每天检测出的感染人数与真实感染人数存在差异的问题,并预测COVID-19疫情发展趋势。  方法  以历史时间窗检测出的数据为依据,将时间窗策略结合长短期记忆(long short term memory, LSTM)网络模型对世界各个地区的确诊人数进行预测分析。  结果  基于时间窗的LSTM网络模型与其他模型相比准确度较高。对时间窗宽度进行分析发现,当宽度取5时预测结果最接近真实数据,这与COVID-19的潜伏期普遍为3~7 d相吻合。  结论  该方法为COVID-19疫情发展以及其潜伏期的分析提供了参考。
  • 图  1  WT-LSTM网络模型

    Figure  1.  Window-Time-LSTM model

    图  2  模型预测结果

    Figure  2.  Prediction results of models

    表  1  时间窗宽度分析结果

    Table  1.   Window-Time width analysis results

    宽度参数(n) 时间窗双向关联权重系数(a) 模型平均(RMSE) 模型平均(MAE) 模型平均(MAPE)
    1 0.576 116 8 834.264 7 368.893 1.676
    2 0.498 397 10 038.900 7 654.034 1.223
    3 0.474 832 7 589.277 5 705.968 1.242
    4 0.466 715 6 258.321 4 588.270 1.235
    5 0.463 798 5 595.714 3 549.351 1.132
    6 0.462 734 6 304.506 4 992.106 1.278
    7 0.462 343 6 407.598 4 274.729 1.330
    8 0.462 201 6 553.170 4 122.248 1.344
    9 0.462 147 7 103.133 4 366.778 3.371
    10 0.462 128 7 503.113 4 666.238 1.346
    11 0.462 121 6 901.131 4 432.232 1.226
    12 0.462 118 6 812.243 5 889.700 2.279
    13 0.462 117 6 193.711 3 773.097 2.274
    14 0.462 116 6 070.431 3 927.931 2.013
    下载: 导出CSV

    表  2  模型对比结果

    Table  2.   Comparison results of different models

    模型 RMSE MAE MAPE
    LSTM 475.839 308.708 0.244
    Logistic 1 663.310 1 343.311 0.357
    MLP 16 664.960 3 232.017 17.914
    WT-LSTM 418.427 180.829 0.059
    WT-Logistic 1 406.375 721.579 0.267
    WT-MLP 14 541.510 2 243.632 15.321
    下载: 导出CSV

    表  3  WT-LSTM网络模型预测实验评价指标

    Table  3.   Evaluation index of experiments of WT-LSTM model

    模型 RMSE MAE MAPE
    中国湖南省 6.271 2.160 0.001
    美国 16 935.450 15 415.163 2.424
    中国广东预测浙江 11.602 6.361 0.023
    意大利预测浙江 93.185 89.672 0.283
    加拿大预测美国 21 470.885 17 144.790 1.346
    中国北京预测美国 644 572.900 567 618.440 271.889
    下载: 导出CSV
  • [1] World Health Organization. Coronavirus Disease (COVID-19)[EB/OL]. (2020-11-20)[2020-11-20]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
    [2] Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application[J]. Ann Intern Med, 2020, 172(9): 577-582. DOI: 10.7326/M20-0504.
    [3] Sohrabi C, Alsafi Z, O'Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)[J]. Int J Surg, 2020, 76: 71-76. DOI: 10.1016/j.ijsu.2020.02.034.
    [4] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506. DOI: 10.1016/S0140-6736(20)30183-5.
    [5] Ying S, Li F, Geng X, et al. Spread and control of COVID-19 in China and their associations with population movement, public health emergency measures, and medical resources[J]. medRxiv, 2020, 2020.02.24.20027623. DOI: 10.1101/2020.02.24.20027623.
    [6] Li MY, Muldowney JS. Global stability for the SEIR model in epidemiology[J]. Math Biosci, 1995, 125(2): 155-164. DOI: 10.1016/0025-5564(95)92756-5.
    [7] 梅文娟, 刘震, 朱静怡, 等. 新冠肺炎疫情极限IR实时预测模型[J]. 电子科技大学学报, 2020, 49(3): 362-368. DOI: 10.12178/1001-0548.2020063.

    Mei WJ, Liu Z, Zhu JY, et al. Extreme IR model for COVID-19 real-time forecasting[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 362-368. DOI: 10.12178/1001-0548.2020063.
    [8] Chintalapudi N, Battineni G, Amenta F. COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: A data driven model approach[J]. J Microbiol Immunol Infect, 2020, 53(3): 396-403. DOI: 10.1016/j.jmii.2020.04.004.
    [9] Yin R, Zhang Y, Zhou X, et al. Time series computational prediction of vaccines for influenza A H3N2 with recurrent neural networks[J]. J Bioinform Comput Biol, 2020, 18(1): 2040002. DOI: 10.1142/S0219720020400028.
    [10] 王淑平, 杜敏, 罗建伟, 等. GM(1, 1)模型与LSTM神经网络在肺结核发病数预测中的应用[J]. 公共卫生与预防医学, 2019, 30(5): 11-14. doi: 10.3969/j.issn.1006-2483.2019.05.003

    Wang SP, Du M, Luo JW, et al. Application of GM(1, 1) model and LSTM neural network in predicting the incidence of pulmonary tuberculosis[J]. J of Pub Health and Prev Med, 2019, 30(5): 11-14. DOI: 10.3969/j.issn.1006-2483.2019.05.003.
    [11] 高秋菊, 周宇畅, 赵树青, 等. ARIMA乘积季节模型和LSTM深度神经网络对石家庄市手足口病疫情预测效果的比较[J]. 中华疾病控制杂志, 2020, 24(1): 73-78. DOI: 10.16462/j.cnki.zhjbkz.2020.01.015.

    Gao QJ, Zhou YC, Zhao SQ, et al. Comparison on predictive capacity of ARIMA model and LSTM model for incidence of hand, foot and mouth disease in Shijiazhuang[J]. Chin J Dis Control Prev, 2020, 24(1): 73-78. DOI: 10.16462/j.cnki.zhjbkz.2020.01.015.
    [12] Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. J Thorac Dis, 2020, 12(3): 165-174. DOI: 10.21037/jtd.2020.02.64.
    [13] Tomar A, Gupta N. Prediction for the spread of COVID-19 in India and effectiveness of preventive measures[J]. Sci Total Environ, 2020, 728: 138762. DOI: 10.1016/j.scitotenv.2020.138762.
    [14] Chimmula VKR, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks[J]. Chaos Solitons Fractals, 2020, 135: 109864. DOI: 10.1016/j.chaos.2020.109864.
    [15] Chatterjee A, Gerdes MW, Martinez SG. Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death[J]. Sensors (Basel), 2020, 20(11): 3089. DOI: 10.3390/s20113089.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  706
  • HTML全文浏览量:  225
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-12-16
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-05-10

目录

    /

    返回文章
    返回