-
摘要:
目的 提出一种新的网络模型以解决COVID-19出现初期认知不够、检测能力受限以及潜伏期长等因素导致每天检测出的感染人数与真实感染人数存在差异的问题,并预测COVID-19疫情发展趋势。 方法 以历史时间窗检测出的数据为依据,将时间窗策略结合长短期记忆(long short term memory, LSTM)网络模型对世界各个地区的确诊人数进行预测分析。 结果 基于时间窗的LSTM网络模型与其他模型相比准确度较高。对时间窗宽度进行分析发现,当宽度取5时预测结果最接近真实数据,这与COVID-19的潜伏期普遍为3~7 d相吻合。 结论 该方法为COVID-19疫情发展以及其潜伏期的分析提供了参考。 Abstract:Objective To solve the data difference between COVID-19 confirmed cases and actual number of COVID-19 infections, a new model is proposed to predict the spread of the disease. The data difference has been mainly caused by insufficient understanding in the early stage of transmission, limited detection capabilities and the long incubation period. Methods The historical data of the number of confirmed cases are analyzed based on Window-Time. A Long Short-Term Memory (LSTM) network model is combined with the Window-Time strategy to analyze and predict the actual number of infections according to data published of various regions in the world. Results The LSTM network model with Window-Time strategy has higher accuracy than other models. Tuning the width of the Window-Time to the width of 5, the prediction result shows that it is closest to the real actual number of infections, which is consistent with the incubation period of COVID-19 generally known as 3-7 days. Conclusion This method provides a reference for the analysis of the transmission rate of COVID-19 and the incubation period of the epidemic. -
Key words:
- COVID-19 /
- Window-Time /
- LSTM network
-
表 1 时间窗宽度分析结果
Table 1. Window-Time width analysis results
宽度参数(n) 时间窗双向关联权重系数(a) 模型平均(RMSE) 模型平均(MAE) 模型平均(MAPE) 1 0.576 116 8 834.264 7 368.893 1.676 2 0.498 397 10 038.900 7 654.034 1.223 3 0.474 832 7 589.277 5 705.968 1.242 4 0.466 715 6 258.321 4 588.270 1.235 5 0.463 798 5 595.714 3 549.351 1.132 6 0.462 734 6 304.506 4 992.106 1.278 7 0.462 343 6 407.598 4 274.729 1.330 8 0.462 201 6 553.170 4 122.248 1.344 9 0.462 147 7 103.133 4 366.778 3.371 10 0.462 128 7 503.113 4 666.238 1.346 11 0.462 121 6 901.131 4 432.232 1.226 12 0.462 118 6 812.243 5 889.700 2.279 13 0.462 117 6 193.711 3 773.097 2.274 14 0.462 116 6 070.431 3 927.931 2.013 表 2 模型对比结果
Table 2. Comparison results of different models
模型 RMSE MAE MAPE LSTM 475.839 308.708 0.244 Logistic 1 663.310 1 343.311 0.357 MLP 16 664.960 3 232.017 17.914 WT-LSTM 418.427 180.829 0.059 WT-Logistic 1 406.375 721.579 0.267 WT-MLP 14 541.510 2 243.632 15.321 表 3 WT-LSTM网络模型预测实验评价指标
Table 3. Evaluation index of experiments of WT-LSTM model
模型 RMSE MAE MAPE 中国湖南省 6.271 2.160 0.001 美国 16 935.450 15 415.163 2.424 中国广东预测浙江 11.602 6.361 0.023 意大利预测浙江 93.185 89.672 0.283 加拿大预测美国 21 470.885 17 144.790 1.346 中国北京预测美国 644 572.900 567 618.440 271.889 -
[1] World Health Organization. Coronavirus Disease (COVID-19)[EB/OL]. (2020-11-20)[2020-11-20]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [2] Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application[J]. Ann Intern Med, 2020, 172(9): 577-582. DOI: 10.7326/M20-0504. [3] Sohrabi C, Alsafi Z, O'Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)[J]. Int J Surg, 2020, 76: 71-76. DOI: 10.1016/j.ijsu.2020.02.034. [4] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506. DOI: 10.1016/S0140-6736(20)30183-5. [5] Ying S, Li F, Geng X, et al. Spread and control of COVID-19 in China and their associations with population movement, public health emergency measures, and medical resources[J]. medRxiv, 2020, 2020.02.24.20027623. DOI: 10.1101/2020.02.24.20027623. [6] Li MY, Muldowney JS. Global stability for the SEIR model in epidemiology[J]. Math Biosci, 1995, 125(2): 155-164. DOI: 10.1016/0025-5564(95)92756-5. [7] 梅文娟, 刘震, 朱静怡, 等. 新冠肺炎疫情极限IR实时预测模型[J]. 电子科技大学学报, 2020, 49(3): 362-368. DOI: 10.12178/1001-0548.2020063.Mei WJ, Liu Z, Zhu JY, et al. Extreme IR model for COVID-19 real-time forecasting[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 362-368. DOI: 10.12178/1001-0548.2020063. [8] Chintalapudi N, Battineni G, Amenta F. COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: A data driven model approach[J]. J Microbiol Immunol Infect, 2020, 53(3): 396-403. DOI: 10.1016/j.jmii.2020.04.004. [9] Yin R, Zhang Y, Zhou X, et al. Time series computational prediction of vaccines for influenza A H3N2 with recurrent neural networks[J]. J Bioinform Comput Biol, 2020, 18(1): 2040002. DOI: 10.1142/S0219720020400028. [10] 王淑平, 杜敏, 罗建伟, 等. GM(1, 1)模型与LSTM神经网络在肺结核发病数预测中的应用[J]. 公共卫生与预防医学, 2019, 30(5): 11-14. doi: 10.3969/j.issn.1006-2483.2019.05.003Wang SP, Du M, Luo JW, et al. Application of GM(1, 1) model and LSTM neural network in predicting the incidence of pulmonary tuberculosis[J]. J of Pub Health and Prev Med, 2019, 30(5): 11-14. DOI: 10.3969/j.issn.1006-2483.2019.05.003. [11] 高秋菊, 周宇畅, 赵树青, 等. ARIMA乘积季节模型和LSTM深度神经网络对石家庄市手足口病疫情预测效果的比较[J]. 中华疾病控制杂志, 2020, 24(1): 73-78. DOI: 10.16462/j.cnki.zhjbkz.2020.01.015.Gao QJ, Zhou YC, Zhao SQ, et al. Comparison on predictive capacity of ARIMA model and LSTM model for incidence of hand, foot and mouth disease in Shijiazhuang[J]. Chin J Dis Control Prev, 2020, 24(1): 73-78. DOI: 10.16462/j.cnki.zhjbkz.2020.01.015. [12] Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. J Thorac Dis, 2020, 12(3): 165-174. DOI: 10.21037/jtd.2020.02.64. [13] Tomar A, Gupta N. Prediction for the spread of COVID-19 in India and effectiveness of preventive measures[J]. Sci Total Environ, 2020, 728: 138762. DOI: 10.1016/j.scitotenv.2020.138762. [14] Chimmula VKR, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks[J]. Chaos Solitons Fractals, 2020, 135: 109864. DOI: 10.1016/j.chaos.2020.109864. [15] Chatterjee A, Gerdes MW, Martinez SG. Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death[J]. Sensors (Basel), 2020, 20(11): 3089. DOI: 10.3390/s20113089.