-
摘要:
目的 掌握COVID-19疫情的空间格局和时空变化特征,探索其分布和扩散规律,有助于更好地防控COVID-19疫情扩散。 方法 本文以2020年1月22日-5月26日中国COVID-19疫情省级逐日发病率数据为数据源,利用空间自相关技术分析COVID-19疫情的空间格局,并利用重心轨迹迁移算法对其进行时空演化分析。 结果 在研究时间段范围内,中国COVID-19疫情在省级尺度上具有较强的空间依赖性。2020年1月22日-5月26日,中国COVID-19疫情的全局空间关联程度呈由强变弱再增强的发展趋势,Moran's I在(-0.04,-0.02)区间内,均为负值且波动范围小;疫情总体呈现以湖北省武汉市为中心,向周围城市蔓延扩散且随机分布的空间格局,国内疫情主要以高-低集聚为主,高-高集聚集中在香港和澳门特别行政区,而湖北省一直处于高-低集聚模式,并且在研究时间段内高-低集聚模式只有湖北省一个省份,低-低集聚模式主要集中在黑龙江省和西藏自治区;T1-T3时间段疫情以武汉市为中心向西北方向急剧扩散,T4-T6时间段范围内疫情逐渐转为向西南方向发展扩散,T7-T9时间段内疫情向东北方向扩散蔓延。 结论 在今后的疫情防控工作中应更注重疫情空间扩散模式的研究,探索影响扩散的因素,为后期精准防疫措施的制定提供有力的理论支撑。 Abstract:Objective To better control the spread of COVID-19, it is important to understand the spatial pattern of COVID-19 and its spatiotemporal evolution characteristics, and explore its distribution and diffusion laws. Methods In this study, based on the daily incidence data of COVID-19 in China from January 22 to May 26, 2020, spatial autocorrelation was used to analyze the spatial pattern of COVID-19, and center of gravity trajectory migration algorithm was used to explore spatial-temporal evolution process. Results In the study period, COVID-19 had strong spatial dependence at the provincial scale. From January 22 to May 26, 2020, the global spatial correlation of COVID-19 showed a trend of increasing from strong to weak. Moran's I was negative in the range of (-0.04, -0.02) and had a small fluctuation range. The COVID-19 epidemic in China showed a general pattern with Wuhan City in Hubei Province as the center, spreading to the surrounding cities and random distribution. The domestic epidemic were mainly high-low clusters, and high-high clusters were distributed in Hong Kong and Macao Special Administrative Regions, while Hubei Province had been in the high-low clusters. In the study period, the high-low cluster was only one province in Hubei Province, and the low-low clusters were mainly distributed in Heilongjiang Province and Tibet Autonomous Region. During the T1-T3 period, the epidemic spread rapidly from Wuhan City to the northwest. During the T4-T6 period, the epidemic gradually spread to the southwest. During the T7-T9 period, the epidemic spread to the northeast. Conclusions In the future epidemic prevention and control work, we should pay more attention to the study of epidemic spatial diffusion model, explore the factors affecting diffusion, so as to provide strong theoretical support for the formulation of precise epidemic prevention measures. -
表 1 2020年1月22日-5月26日中国COVID-19发病率重心轨迹迁移计算结果
Table 1. The calculation results of gravity center trajectory migration of the incidence of COVID-19 in China from January 22 to May 26, 2020
时间阶段 阶段观测属性值 阶段发病变化强度 重心迁移方向(°) 重心迁移距离(km) T1 6.24 - - - T2 37.04 30.80 西北118.44 39.00 T3 55.77 18.73 西北176.30 8.35 T4 58.10 2.32 西南257.54 2.44 T5 61.32 3.23 西南287.15 38.77 T6 65.77 4.45 西南292.31 44.50 T7 67.37 1.60 东北42.47 12.72 T8 67.63 0.26 东北53.41 2.07 T9 67.84 0.21 东北38.96 1.81 -
[1] 周成虎, 裴韬, 杜云艳, 等. 新冠肺炎疫情大数据分析与区域防控政策建议[J]. 中国科学院院刊, 2020, 35(2): 200-203. DOI: 10.16418/j.issn.1000-3045.20200209001.Zhou CH, Pei T, Du YY, et al. Big data analysis on COVID-19 epidemic and suggestions on regional prevention and control policy[J]. Bull Chin Acad Sci, 2020, 35(2): 200-203. DOI: 10.16418/j.issn.1000-3045.20200209001. [2] 金启轩. 中国新冠肺炎疫情预测建模与理性评估[J]. 统计与决策, 2020, 36(5): 11-14. DOI: 10.13546/j.cnki.tjyjc.2020.05.002.Jin QX. Novel coronavirus pneumonia epidemic prediction modeling and rational evaluation in China[J]. Statistics & Decision, 2020, 36(5): 11-14. DOI: 10.13546/j.cnki.tjyjc.2020.05.002. [3] 闫丽, 赵新, 乔秋阁. 新冠病毒肺炎COVID-19的临床防护及护理[J]. 基因组学与应用生物学, 2020, 39(8): 3886-3889. DOI: 10.13417/j.gab.039.003886.Yan L, Zhao X, Qiao QG. Clinic protection and nursing of COVID-19 caused by SARS-CoV-2[J]. Genomics and Applied Biology, 2020, 39(8): 3886-3889. DOI: 10.13417/j.gab.039.003886. [4] 熊子军, 张喆, 王雅琦, 等. 新型冠状病毒的基因组变异与分子诊断[J]. 西安交通大学学报(医学版), 2020, 41(4): 473-478. DOI: 10.7652/jdyxb202004001.Xiong ZJ, Zhang Z, Wang YQ, et al. Genomic variations of SARS-CoV-2 and molecular diagnosis[J]. J Xi'an Jiaotong Univ (Med Sci), 2020, 41(4): 473-478. DOI: 10.7652/jdyxb202004001. [5] 黄婧, 赵秋玲, 徐康, 等. 基于网络数据的新型冠状病毒肺炎流行特征分析[J]. 中华疾病控制杂志, 2020, 24(11): 1338-1342. DOI: 10.16462/j.cnki.zhjbkz.2020.11.018.Huang J, Zhao QL, Xu K, et al. Analysis of COVID-19 epidemic characteristics based on network data[J]. Chin J Dis Control Prev, 2020, 24(11): 1338-1342. DOI: 10.16462/j.cnki.zhjbkz.2020.11.018. [6] 李文辉, 邱晓晴. 基于社会网络的城市疫情空间扩散及治理研究—以深圳新冠肺炎病例为依据[EB/OL]. (2020-10-30)[2020-12-07]. http://kns.cnki.net/kcms/detail/31.1626.P.20201030.1400.002.html.Li WH, Qiu XQ. Research on spatial spread and control of urban epidemic by social network-based on the prevention and control of COVID-19 in Shenzhen[EB/OL]. (2020-10-30)[2020-12-07]. http://kns.cnki.net/kcms/detail/31.1626.P.20201030.1400.002.html. [7] 王姣娥, 杜德林, 魏冶, 等. 新冠肺炎疫情的空间扩散过程与模式研究[J]. 地理研究, 2020, 39(7): 1450-1462. DOI: 10.11821/dlyj020200329.Wang JE, Du DL, Wei Y, et al. The development of COVID-19 in China: spatial diffusion and geographical pattern[J]. Geographical Research, 2020, 39(7): 1450-1462. DOI: 10.11821/dlyj020200329. [8] 金安楠, 李钢, 王皎贝, 等. 深圳市新型冠状病毒肺炎(COVID-19)疫情时空演化与防控对策[J]. 陕西师范大学学报(自然科学版), 2020, 48(3): 18-32. DOI: 10.15983/j.cnki.jsnu.2020.03.017.Jin AN, Li G, Wang JB, et al. Spatio-temporal evolution and control strategies of COVID-19 epidemic in Shenzhen, China[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2020, 48(3): 18-32. DOI: 10.15983/j.cnki.jsnu.2020.03.017. [9] Anselin L. Local indicators of spatial association—LISA[J]. Geogr Anal, 1995, 27(2): 93-115. DOI: 10.1111/j.1538-4632.1995.tb00338.x. [10] 张延炀, 肖占沛, 杨凯朝, 等. 河南省新型冠状病毒肺炎时空聚集性[J]. 中华疾病控制杂志, 2020, 24(5): 534-538, 572. DOI: 10.16462/j.cnki.zhjbkz.2020.05.008.Zhang YY, Xiao ZP, Yang KC, et al. Study on the spatiotemporal clusters of coronavirus disease 2019 in Henan Province[J]. Chin J Dis Control Prev, 2020, 24(5): 534-538, 572. DOI: 10.16462/j.cnki.zhjbkz.2020.05.008. [11] 陈晓, 黄宇金, 李佳慧, 等. COVID-19疫情时空聚集性特征及影响因素分析—以重庆市为例[J]. 地理科学进展, 2020, 39(11): 1798-1808. DOI: 10.18306/dlkxjz.2020.11.002.Chen X, Huang YJ, Li JH, et al. Clustering characteristics of COVID-19 cases and influencing factors in Chongqing Municipality[J]. Progress in Geography, 2020, 39(11): 1798-1808. DOI: 10.18306/dlkxjz.2020.11.002.