• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国职业卫生与职业病研究的进展

戴宇飞 郑玉新

戴宇飞, 郑玉新. 中国职业卫生与职业病研究的进展[J]. 中华疾病控制杂志, 2022, 26(8): 869-875. doi: 10.16462/j.cnki.zhjbkz.2022.08.001
引用本文: 戴宇飞, 郑玉新. 中国职业卫生与职业病研究的进展[J]. 中华疾病控制杂志, 2022, 26(8): 869-875. doi: 10.16462/j.cnki.zhjbkz.2022.08.001
DAI Yu-fei, ZHENG Yu-xin. Research progress of occupational health and occupational disease in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(8): 869-875. doi: 10.16462/j.cnki.zhjbkz.2022.08.001
Citation: DAI Yu-fei, ZHENG Yu-xin. Research progress of occupational health and occupational disease in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(8): 869-875. doi: 10.16462/j.cnki.zhjbkz.2022.08.001

中国职业卫生与职业病研究的进展

doi: 10.16462/j.cnki.zhjbkz.2022.08.001
基金项目: 

国家自然科学基金 82073595

详细信息
    通讯作者:

    郑玉新,E-mail: yx_zheng@139.com

  • 中图分类号: R13

Research progress of occupational health and occupational disease in China

Funds: 

National Natural Science Foundation of China 82073595

More Information
  • 摘要: 近年来中国职业卫生与职业病研究取得了长足的发展,以职业暴露人群为研究中心,针对职业病的病因、发病机制、人群易感性生物标志物以及风险评估等方面开展了大量的研究,填补了中国甚至世界范围内诸多职业卫生与职业病方面的空缺,具有重要的公共卫生意义。目前中国处于高速发展阶段,大批新兴的、创新的技术正应用于各个领域,推动着中国的产业结构、生产方式和生产技术发生巨大变革,新兴领域的高速发展对职业卫生提出了新的挑战,表现为传统的职业性有害因素带来的职业卫生问题逐渐减少,新的问题不断出现。职业卫生和职业医学也迫切需要将医学科学的新理念、新技术应用于本学科,建立新型健康风险评价体系,进而满足职业人群健康监护和职业病诊断治疗的需求。
  • [1] Li J, Yin P, Wang H, et al. The disease burden attributable to 18 occupational risks in China: an analysis for the global burden of disease study 2017[J]. Environ Health, 2020, 19(1): 21. DOI: 10.1186/s12940-020-00577-y.
    [2] Chen W, Liu Y, Wang H, et al. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study[J]. PLoS Med, 2012, 9(4): e1001206. DOI: 10.1371/journal.pmed.1001206.
    [3] Liu Y, Steenland K, Rong Y, et al. Exposure-response analysis and risk assessment for lung cancer in relationship to silica exposure: a 44-year cohort study of 34, 018 workers[J]. Am J Epidemiol, 2013, 178(9): 1424-1433. DOI: 10.1093/aje/kwt139.
    [4] 刘跃伟. 矽尘长期暴露人群死亡率的队列研究[D]. 武汉: 华中科技大学, 2011.

    Liu YW. Cohort Mortality Study of Workers with Long-Term Exposure to Silica Dust[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [5] Tse LA, Dai J, Chen M, et al. Prediction models and risk assessment for silicosis using a retrospective cohort study among workers exposed to silica in China[J]. Sci Rep, 2015, 5: 11059. DOI: 10.1038/srep11059.
    [6] IARC working group on the evaluation of carcinogenic risks to humans. Arsenic, metals, fibres, and dusts[J]. IARC Monogr Eval Carcinog Risks Hum, 2012, 100(Pt C): 11-465.
    [7] 夏丽华, 黄汉林, 邝守仁, 等. 三氯乙烯所致药疹样皮炎50例临床分析[J]. 中华劳动卫生职业病杂志, 2004, 22(3): 51-54. DOI: 10.3760/cma.j.issn.1001-9391.2004.03.014.

    Xia LH, Huang HL, Kuang SR, et al. A clinical analysis of 50 cases of medicament-like dermatitis due to trichloroethylene[J]. Chin J Ind Hyg Occup Dis, 2004, 22(3): 51-54. DOI: 10.3760/cma.j.issn.1001-9391.2004.03.014.
    [8] 吴奇峰, 夏丽华, 曾子芳, 等. 职业性三氯乙烯药疹样皮炎临床路径研制[J]. 中国职业医学, 2017, 44(4): 420-424, 429. DOI: 10.11763/j.issn.2095-2619.2017.04.004.

    Wu QF, Xia LH, Zeng ZF, et al. Clinical pathway on occupational medicamentosa-like dermatitis due to trichloroethylene[J]. Chin Occup Med, 2017, 44(4): 420-424, 429. DOI: 10.11763/j.issn.2095-2619.2017.04.004.
    [9] Lv Y, Zou Y, Liu J, et al. Rationale, design and baseline results of the Guangxi manganese-exposed workers healthy cohort (GXMEWHC) study[J]. BMJ Open, 2014, 4(7): e005070. DOI: 10.1136/bmjopen-2014-005070.
    [10] Zhou Y, Ge X, Shen Y, et al. Follow-up of the manganese-exposed workers healthy cohort (MEWHC) and biobank management from 2011 to 2017 in China[J]. BMC Public Health, 2018, 18(1): 944. DOI: 10.1186/s12889-018-5880-0.
    [11] Zou Y, Qing L, Zeng X, et al. Cognitive function and plasma BDNF levels among manganese-exposed smelters[J]. Occup Environ Med, 2014, 71(3): 189-194. DOI: 10.1136/oemed-2013-101896.
    [12] Lu XT, Xu SM, Zhang YW, et al. Longitudinal study of the effects of occupational aluminium exposure on workers' cognition[J]. Chemosphere, 2021, 271: 129569. DOI: 10.1016/j.chemosphere.2021.129569.
    [13] Meng H, Wang S, Guo J, et al. Cognitive impairment of workers in a large-scale aluminium factory in China: a cross-sectional study[J]. BMJ Open, 2019, 9(6): e027154. DOI: 10.1136/bmjopen-2018-027154.
    [14] Wang S, Meng H, Shang N, et al. The relationship between plasma al levels and multi-domain cognitive performance among in-service aluminum-exposed workers at the SH aluminum factory in China: a cross-sectional study[J]. Neurotoxicology, 2020, 76: 144-152. DOI: 10.1016/j.neuro.2019.10.011.
    [15] Yang X, Yuan Y, Lu X, et al. The relationship between cognitive impairment and global DNA methylation decrease among aluminum potroom workers[J]. J Occup Environ Med, 2015, 57(7): 713-717. DOI: 10.1097/JOM.0000000000000474.
    [16] Wang F, Zou Y, Shen Y, et al. Synergistic impaired effect between smoking and manganese dust exposure on pulmonary ventilation function in Guangxi manganese-exposed workers healthy cohort (GXMEWHC)[J]. PLoS One, 2015, 10(2): e0116558. DOI: 10.1371/journal.pone.0116558.
    [17] 阳益萍, 黄锦利, 刘静, 等. 长期职业性锰暴露对工人肺功能的影响[J]. 环境与职业医学, 2013, 30(1): 29-31. DOI: 10.13213/j.cnik.jeom.2013.01.015.

    Yang YP, Huang JL, Liu J, et al. Long-term effect of occupational exposure to manganese on pulmonary ventilation function[J]. J Environ Occup Med, 2013, 30(1): 29-31. DOI: 10.13213/j.cnik.jeom.2013.01.015.
    [18] Ou SY, Luo HL, Mailman RB, et al. Effect of manganese on neural endocrine hormones in serum of welders and smelters[J]. J Trace Elem Med Biol, 2018, 50: 1-7. DOI: 10.1016/j.jtemb.2018.05.018.
    [19] Deng Q, Liu J, Li Q, et al. Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China[J]. Environ Health, 2013, 12: 30. DOI: 10.1186/1476-069X-12-30.
    [20] Huang S, Liu Z, Ge X, et al. Occupational exposure to manganese and risk of creatine kinase and creatine kinase-MB elevation among ferromanganese refinery workers[J]. Am J Ind Med, 2020, 63(5): 394-401. DOI: 10.1002/ajim.23097.
    [21] Chen X, Liu Z, Ge X, et al. Associations between manganese exposure and multiple immunological parameters in manganese-exposed workers healthy cohort[J]. J Trace Elem Med Biol, 2020, 59: 126454. DOI: 10.1016/j.jtemb.2020.126454.
    [22] Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions[J]. Oxid Med Cell Longev, 2018, 2018: 7580707. DOI: 10.1155/2018/7580707.
    [23] Li H, Dai Y, Huang H, et al. HLA-B*1301 as a biomarker for genetic susceptibility to hypersensitive dermatitis induced by trichloroethylene among workers in China[J]. Environ Health Perspect, 2007, 115(11): 1553-1556. DOI: 10.1289/ehp.10325.
    [24] Dai Y, Chen Y, Huang H, et al. Performance of genetic risk factors in prediction of trichloroethylene induced hypersensitivity syndrome[J]. Sci Rep, 2015, 5: 12169. DOI: 10.1038/srep12169.
    [25] Dai Y, Zhou W, Jia Q, et al. Utility evaluation of HLA-B*13: 01 screening in preventing trichloroethylene-induced hypersensitivity syndrome in a prospective cohort study[J]. Occup Environ Med, 2020, 77(3): 201-206. DOI: 10.1136/oemed-2019-106171.
    [26] Jia Q, Zang D, Yi J, et al. Cytokine expression in trichloroethylene-induced hypersensitivity dermatitis: an in vivo and in vitro study[J]. Toxicol Lett, 2012, 215(1): 31-39. DOI: 10.1016/j.toxlet.2012.09.018
    [27] Huang Y, Xia L, Wu Q, et al. Trichloroethylene hypersensitivity syndrome is potentially mediated through its metabolite chloral hydrate[J]. PLoS One, 2015, 10(5): e0127101. DOI: 10.1371/journal.pone.0127101.
    [28] Niu Y, Zhang X, Meng T, et al. Exposure characterization and estimation of benchmark dose for cancer biomarkers in an occupational cohort of diesel engine testers[J]. J Expo Sci Environ Epidemiol, 2018, 28(6): 579-588. DOI: 10.1038/s41370-018-0061-x.
    [29] Bin P, Shen M, Li H, et al. Increased levels of urinary biomarkers of lipid peroxidation products among workers occupationally exposed to diesel engine exhaust[J]. Free Radic Res, 2016, 50(8): 820-830. DOI: 10.1080/10715762.2016.1178738.
    [30] Duan H, Jia X, Zhai Q, et al. Long-term exposure to diesel engine exhaust induces primary DNA damage: a population-based study[J]. Occup Environ Med, 2016, 73(2): 83-90. DOI: 10.1136/oemed-2015-102919.
    [31] Zhang X, Duan H, Gao F, et al. Increased micronucleus, nucleoplasmic bridge, and nuclear bud frequencies in the peripheral blood lymphocytes of diesel engine exhaust-exposed workers[J]. Toxicol Sci, 2015, 143(2): 408-417. DOI: 10.1093/toxsci/kfu239.
    [32] Zhang X, Li J, He Z, et al. Associations between DNA methylation in DNA damage response-related genes and cytokinesis-block micronucleus cytome index in diesel engine exhaust-exposed workers[J]. Arch Toxicol, 2016, 90(8): 1997-2008. DOI: 10.1007/s00204-015-1598-2.
    [33] Lan Q, Vermeulen R, Dai Y, et al. Occupational exposure to diesel engine exhaust and alterations in lymphocyte subsets[J]. Occup Environ Med, 2015, 72(5): 354-359. DOI: 10.1136/oemed-2014-102556.
    [34] Dai Y, Ren D, Bassig BA, et al. Occupational exposure to diesel engine exhaust and serum cytokine levels[J]. Environ Mol Mutagen, 2018, 59(2): 144-150. DOI: 10.1002/em.22142.
    [35] Liu H, Li J, Ma Q, et al. Chronic exposure to diesel exhaust may cause small airway wall thickening without lumen narrowing: a quantitative computerized tomography study in Chinese diesel engine testers[J]. Part Fibre Toxicol, 2021, 18(1): 14. DOI: 10.1186/s12989-021-00406-1.
    [36] Chen XY, Feng PH, Han CL, et al. Alveolar epithelial inter-alpha-trypsin inhibitor heavy chain 4 deficiency associated with senescence-regulated apoptosis by air pollution[J]. Environ Pollut, 2021, 278: 116863. DOI: 10.1016/j.envpol.2021.116863.
    [37] Wang Y, Wang T, Xu M, et al. Independent effect of main components in particulate matter on DNA methylation and DNA methyltransferase: A molecular epidemiology study[J]. Environ Int, 2020, 134: 105296. DOI: 10.1016/j.envint.2019.105296.
    [38] Deng Q, Huang S, Zhang X, et al. Plasma microRNA expression and micronuclei frequency in workers exposed to polycyclic aromatic hydrocarbons[J]. Environ Health Perspect, 2014, 122(7): 719-725. DOI: 10.1289/ehp.1307080.
    [39] Wang Y, Duan H, Meng T, et al. Reduced serum club cell protein as a pulmonary damage marker for chronic fine particulate matter exposure in Chinese population[J]. Environ Int, 2018, 112: 207-217. DOI: 10.1016/j.envint.2017.12.024
    [40] Zhang Y, Su Z, Hu G, et al. Lung function assessment and its association with blood chromium in a chromate exposed population[J]. Sci Total Environ, 2022, 818: 151741. DOI: 10.1016/j.scitotenv.2021.151741.
    [41] Li P, Li Y, Zhang J, et al. Biomarkers for lung epithelium injury in occupational hexavalent chromium-exposed workers[J]. J Occup Environ Med, 2015, 57(4): e45-e50. DOI: 10.1097/JOM.0000000000000436.
    [42] Hu G, Long C, Hu L, et al. Blood chromium exposure, immune inflammation and genetic damage: Exploring associations and mediation effects in chromate exposed population[J]. J Hazard Mater, 2022, 425: 127769. DOI: 10.1016/j.jhazmat.2021.127769.
    [43] Cheng W, Pang H, Campen MJ, et al. Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust[J]. Part Fibre Toxicol, 2022, 19(1): 20. DOI: 10.1186/s12989-022-00463-0.
    [44] 贾强, 纪玉青, 孟涛, 等. 利用HLA-B *1301转基因小鼠探讨三氯乙烯诱导迟发型超敏反应效应[J]. 中国职业医学, 2014, 41(5): 481-488. DOI:10.11763 /j.issn.2095-2619.2014.05.001.

    Jia Q, Ji YQ, Meng T, et al. The exploration of trichloroethylene-induced delayed hypersensitivity effect with HLA-B*1301 transgenic mice[J]. Chin Occup Med, 2014, 41(5): 481-488. DOI:10.11763 /j.issn.2095-2619.2014.05.001.
    [45] Wu Z, Liu Q, Wang L, et al. The essential role of CYP2E1 in metabolism and hepatotoxicity of N, N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study[J]. Arch Toxicol, 2019, 93(11): 3169-3181. DOI: 10.1007/s00204-019-02567-7.
    [46] Zhang J, Yang H, Li H, et al. Peptide-binding motifs and characteristics for HLA-B*13: 01 molecule[J]. Tissue Antigens, 2013, 81(6): 442-448. DOI: 10.1111/tan.12114.
    [47] Zhang H, Han Y, Zhang L, et al. The GSK-3β/β-catenin signaling-mediated brain-derived neurotrophic factor pathway is involved in aluminum-induced impairment of hippocampal LTP in vivo[J]. Biol Trace Elem Res, 2021, 199(12): 4635-4645. DOI: 10.1007/s12011-021-02582-9.
    [48] Huang T, Guo W, Wang Y, et al. Involvement of mitophagy in aluminum oxide nanoparticle-induced impairment of learning and memory in mice[J]. Neurotox Res, 2021, 39(2): 378-391. DOI: 10.1007/s12640-020-00283-0.
    [49] Qin X, Li L, Nie X, et al. Effects of chronic aluminum lactate exposure on neuronal apoptosis and hippocampal synaptic plasticity in rats[J]. Biol Trace Elem Res, 2020, 197(2): 571-579. DOI: 10.1007/s12011-019-02007-8.
    [50] Li H, Xue X, Li L, et al. Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway[J]. Neurotox Res, 2020, 37(4): 996-1008. DOI: 10.1007/s12640-020-00165-5.
    [51] Cheng L, Liang R, Li Z, et al. Aluminum maltolate triggers ferroptosis in neurons: mechanism of action[J]. Toxicol Mech Methods, 2021, 31(1): 33-42. DOI: 10.1080/15376516.2020.1821268.
    [52] Song Y, Zhang J, Yu S, et al. Effects of chronic chromium(vi) exposure on blood element homeostasis: an epidemiological study[J]. Metallomics, 2012, 4(5): 463-472. DOI: 10.1039/c2mt20051a.
    [53] Guiping H, Pai Z, Huimin F, et al. Imbalance of oxidative and reductive species involved in chromium (VI)-induced toxic effects[J]. Reactive Oxygen Species, 2017, 3(3): 1-11. DOI: 10.20455/ros.2017.803
    [54] Hu G, Long C, Hu L, et al. Circulating lead modifies hexavalent chromium-induced genetic damage in a chromate-exposed population: An epidemiological study[J]. Sci Total Environ, 2020, 752: 141824. DOI: 10.1016/j.scitotenv.2020.141824.
    [55] Song Y, Wang T, Pu J, et al. Multi-element distribution profile in Sprague-Dawley rats: effects of intratracheal instillation of Cr(VI) and Zn intervention[J]. Toxicol Lett, 2014, 226(2): 198-205. DOI: 10.1016/j.toxlet.2014.02.008.
    [56] Liu F, Liu J, Weng D, et al. CD4+CD25+Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice[J]. PLoS One, 2010, 5(11): e15404. DOI: 10.1371/journal.pone.0015404.
    [57] Guo J, Gu N, Chen J, et al. Neutralization of interleukin-1 beta attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice[J]. Arch Toxicol, 2013, 87(11): 1963-1973. DOI: 10.1007/s00204-013-1063-z.
    [58] Chen Y, Li C, Lu Y, et al. IL-10-producing CD1dhiCD5+ regulatory B cells may play a critical role in modulating immune homeostasis in silicosis patients[J]. Front Immunol, 2017, 8: 110. DOI: 10.3389/fimmu.2017.00110.
    [59] Ying S, Jiang Z, He X, et al. Serum HMGB1 as a potential biomarker for patients with asbestos-related diseases[J]. Dis Markers, 2017, 2017: 5756102. DOI: 10.1155/2017/5756102.
    [60] Song L, Weng D, Dai W, et al. Th17 can regulate silica-induced lung inflammation through an IL-1β-dependent mechanism[J]. J Cell Mol Med, 2014, 18(9): 1773-1784. DOI: 10.1111/jcmm.12341.
    [61] Lu Y, Li C, Du S, et al. 4-1BB signaling promotes alveolar macrophages-mediated pro-fibrotic responses and crystalline silica-induced pulmonary fibrosis in mice[J]. Front Immunol, 2018, 9: 1848. DOI: 10.3389/fimmu.2018.01848.
    [62] Yang M, Wang D, Gan S, et al. Triiodothyronine ameliorates silica-induced pulmonary inflammation and fibrosis in mice[J]. Sci Total Environ, 2021, 790: 148041. DOI: 10.1016/j.scitotenv.2021.148041.
    [63] Li C, Lu Y, Du S, et al. Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice[J]. Theranostics, 2017, 7(17): 4255-4275. DOI: 10.7150/thno.20270.
    [64] He X, Chen S, Li C, et al. Trehalose alleviates crystalline silica-induced pulmonary fibrosis via activation of the TFEB-mediated autophagy-lysosomal system in alveolar macrophages[J]. Cells, 2020, 9(1): 122. DOI: 10.3390/cells9010122.
    [65] Pang J, Qi X, Luo Y, et al. Multi-omics study of silicosis reveals the potential therapeutic targets PGD2 and TXA2[J]. Theranostics, 2021, 11(5): 2381-2394. DOI: 10.7150/thno.47627.
    [66] Zhang Y, Huang L, Wang Y, et al. Characteristics of publications on occupational stress: contributions and trends[J]. Front Public Health, 2021, 9: 664013. DOI: 10.3389/fpubh.2021.664013.
    [67] He SC, Wu S, Wang C, et al. Interaction between job stress and the BDNF Val66Met polymorphism affects depressive symptoms in Chinese healthcare workers[J]. J Affect Disord, 2018, 236: 157-163. DOI: 10.1016/j.jad.2018.04.089.
    [68] Yong X, Gao X, Zhang Z, et al. Associations of occupational stress with job burn-out, depression and hypertension in coal miners of Xinjiang, China: a cross-sectional study[J]. BMJ Open, 2020, 10(7): e036087. DOI: 10.1136/bmjopen-2019-036087.
    [69] Li X, Yang X, Sun X, et al. Associations of musculoskeletal disorders with occupational stress and mental health among coal miners in Xinjiang, China: a cross-sectional study[J]. BMC Public Health, 2021, 21(1): 1327. DOI: 10.1186/s12889-021-11379-3.
    [70] Zhang H, Shao MM, Lin XD, et al. A cross-sectional survey on occupational stress and associated dyslipidemia among medical staff in tertiary public hospitals in Wenzhou, China[J]. Brain Behav, 2021, 11(3): e02014. DOI: 10.1002/brb3.2014.
    [71] Yang T, Qiao Y, Xiang S, et al. Work stress and the risk of cancer: A meta-analysis of observational studies[J]. Int J Cancer, 2019, 144(10): 2390-2400. DOI: 10.1002/ijc.31955.
  • 加载中
计量
  • 文章访问数:  1331
  • HTML全文浏览量:  418
  • PDF下载量:  872
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-06-09
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2022-08-10

目录

    /

    返回文章
    返回