-
摘要:
目的 探讨中国柯萨奇病毒A组2型(coxsackievirus A2, CV-A2)毒株的遗传进化特征。 方法 收集中国CV-A2毒株的VP1区及全基因序列,采用MEGA 10.2.4软件构建系统进化树并开展氨基酸位点突变分析,采用SimPlot 3.5.1软件进行基因重组分析。 结果 共收集到118条VP1序列和26条全基因序列。CV-A2毒株主要来源于广东省,毒株数量自2011年开始迅速增多。基于VP1序列构建的进化树有7个分支,原型毒株为独立A组,多数CV-A2毒株聚集于G组。具有全基因组序列的CV-A2代表株的基因重组分析显示毒株间存在基因重组。另外,VP1氨基酸序列共有22个突变位点。 结论 中国流行的CV-A2毒株已发生较明显的基因重组和VP1区域氨基酸位点突变,监测CV-A2的演化对于手足口病的防控具有重要意义。 Abstract:Objective To analyze the phylogenetic character of coxsackievirus A2 (CV-A2) strains in China. Methods Sequences of the VP1 region and complete genomes of CV-A2 strains in China were collected. The phylogenetic tree and analysis of amino acid mutation were conducted by MEGA 10.2.4 software. The analysis of genetic recombination was carried out through SimPlot 3.5.1 software. Results A total of 118 sequences of CV-A2 VP1 were collected, and 26 strains had complete genome sequences. CV-A2 strains mainly originated from Guangdong Province. The number of CV-A2 strains had increased rapidly since 2011. Phylogenetic tree based on the VP1 region was clustered into seven distinct lineages, and the prototype strains were a separate lineage A while most of strains gathered in lineages G. The analysis of gene recombination of CV-A2 representative strains with complete genome sequences exhibited recombinant segments. The amino acid variations were found at 22 sites of VP1 protein. Conclusion CV-A2 strains circulating in China have undergone gene recombination and mutations in the amino acid sites of the VP1 region, suggesting that monitoring the evolution of CV-A2 is of great significance for the prevention and control of hand-foot-mouth disease. -
Key words:
- Coxsackievirus A2 /
- Systematic evolution /
- Gene recombination
-
表 1 参考毒株序列
Table 1. Sequences of reference strains
血清型 名称 GenBank序列号 CV-A2 Fleetwood AY421760 CV-A3 Olson AY421761 CV-A4 High Point AY421762 CV-A5 Swatrz AY421763 CV-A6 Gdula AY421764 CV-A7 Parker AY421765 CV-A8 Donovan AY421766 CV-A10 Kowalik AY421767 CV-A12 Texas-12 AY421768 CV-A14 G-14 AY421769 CV-A16 G-10 U05876 EV-A71 BrCr U22521 EV-A76 FRA91-10369 AY697458 EV-A89 BAN00-10359 AY697459 EV-A90 BAN99-10399 AY697460 EV-A91 BAN00-10406 AY697461 EV-A92 USA/GA99-RJg-7 EF667344 -
[1] Solomon T, Lewthwaite P, Perera D, et al. Virology, epidemiology, pathogenesis, and control of enterovirus 71[J]. Lancet Infect Dis, 2010, 10(11): 778-790. DOI: 10.1016/S1473-3099(10)70194-8. [2] Guan H, Wang J, Wang C, et al. Etiology of multiple non-EV71 and non-CVA16 enteroviruses associated with hand, foot and mouth disease in Jinan, China, 2009-June 2013[J]. PLoS One, 2015, 10(11): e0142733. DOI: 10.1371/journal.pone.0142733. [3] Chen SP, Huang YC, Li WC, et al. Comparison of clinical features between coxsackievirus A2 and enterovirus 71 during the enterovirus outbreak in Taiwan, 2008: a children's hospital experience[J]. J Microbiol Immunol Infect, 2010, 43(2): 99-104. DOI: 10.1016/s1684-1182(10)60016-3. [4] Yip CC, Lau SK, Woo PC, et al. Recombinant coxsackievirus A2 and deaths of children, Hong Kong, 2012[J]. Emerg Infect Dis, 2013, 19(8): 1285-1288. DOI: 10.3201/eid1908.121498. [5] Li W, Gao HH, Zhang Q, et al. Large outbreak of herpangina in children caused by enterovirus in summer of 2015 in Hangzhou, China[J]. Sci Rep, 2016, 6: 35388. DOI: 10.1038/srep35388. [6] Yang Q, Zhang Y, Yan D, et al. Two genotypes of Coxsackievirus A2 associated with hand, foot, and mouth disease circulating in China since 2008[J]. PLoS One, 2016, 11(12): e0169021. DOI: 10.1371/journal.pone.0169021. [7] Tsai HP, Huang SW, Wu FL, et al. An echovirus 18-associated outbreak of aseptic meningitis in Taiwan: epidemiology and diagnostic and genetic aspects[J]. J Med Microbiol, 2011, 60(Pt 9): 1360-1365. DOI: 10.1099/jmm.0.027698-0. [8] Chansaenroj J, Auphimai C, Puenpa J, et al. High prevalence of coxsackievirus A2 in children with herpangina in Thailand in 2015[J]. Virusdisease, 2017, 28(1): 111-114. DOI: 10.1007/s13337-017-0366-8. [9] Oberste MS, Maher K, Pallansch MA. Evidence for frequent recombination within species human enterovirus B based on complete genomic sequences of all thirty-seven serotypes[J]. J Virol, 2004, 78(2): 855-867. DOI: 10.1128/jvi.78.2.855-867.2004. [10] Oberste MS, Peñaranda S, Maher K, et al. Complete genome sequences of all members of the species human enterovirus A[J]. J Gen Virol, 2004, 85(Pt 6): 1597-1607. DOI: 10.1099/vir.0.79789-0. [11] Mao Y, Zhang N, Zhu B, et al. A descriptive analysis of the spatio-temporal distribution of intestinal infectious diseases in China[J]. BMC Infect Dis, 2019, 19(1): 766. DOI: 10.1186/s12879-019-4400-x. [12] Chen C, Jiang Q, Song Z, et al. Influence of temperature and humidity on hand, foot, and mouth disease in Guangzhou, 2013-2017[J]. J Int Med Res, 2020, 48(6): 300060520929895. DOI: 10.1177/0300060520929895. [13] Lindberg AM, Andersson P, Savolainen C, et al. Evolution of the genome of human enterovirus B: incongruence between phylogenies of the VP1 and 3CD regions indicates frequent recombination within the species[J]. J Gen Virol, 2003, 84(Pt 5): 1223-1235. DOI: 10.1099/vir.0.18971-0. [14] Singh S, Chow VT, Chan KP, et al. RT-PCR, nucleotide, amino acid and phylogenetic analyses of enterovirus type 71 strains from Asia[J]. J Virol Methods, 2000, 88(2): 193-204. DOI: 10.1016/s0166-0934(00)00185-3. [15] 邱晓枫, 祝水芬, 濮小英, 等. 杭州市肠道病毒71型的分离与VP1区域序列分析[J]. 中国预防医学杂志, 2011, 12(12): 1014-1018. DOI: 10.16506/j.1009-6639.2011.12.022.Qiu XF, Zhu SF, Pu XY, et al. Isolation and sequencing of VP1 region of Enterovirus 71 strains in Hangzhou, Zhejiang, China[J]. Chin Prev Med, 2011, 12(12): 1014-1018. DOI: 10.16506/j.1009-6639.2011.12.022.