• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气污染短期暴露与胎盘早剥关联的巢式病例对照研究

刘涵 王童 詹宇 郭瑛 凌曦 杨桓 陈卿 周文正 曹佳

刘涵, 王童, 詹宇, 郭瑛, 凌曦, 杨桓, 陈卿, 周文正, 曹佳. 大气污染短期暴露与胎盘早剥关联的巢式病例对照研究[J]. 中华疾病控制杂志, 2024, 28(4): 424-430. doi: 10.16462/j.cnki.zhjbkz.2024.04.008
引用本文: 刘涵, 王童, 詹宇, 郭瑛, 凌曦, 杨桓, 陈卿, 周文正, 曹佳. 大气污染短期暴露与胎盘早剥关联的巢式病例对照研究[J]. 中华疾病控制杂志, 2024, 28(4): 424-430. doi: 10.16462/j.cnki.zhjbkz.2024.04.008
LIU Han, WANG Tong, ZHAN Yu, GUO Ying, LING Xi, YANG Huan, CHEN Qing, ZHOU Wenzheng, CAO Jia. Association between short-term air pollution exposure and placental abruption: a nested case-control study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(4): 424-430. doi: 10.16462/j.cnki.zhjbkz.2024.04.008
Citation: LIU Han, WANG Tong, ZHAN Yu, GUO Ying, LING Xi, YANG Huan, CHEN Qing, ZHOU Wenzheng, CAO Jia. Association between short-term air pollution exposure and placental abruption: a nested case-control study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(4): 424-430. doi: 10.16462/j.cnki.zhjbkz.2024.04.008

大气污染短期暴露与胎盘早剥关联的巢式病例对照研究

doi: 10.16462/j.cnki.zhjbkz.2024.04.008
基金项目: 

国家重点研发计划 2022YFC2702900

详细信息
    通讯作者:

    周文正,E-mail:zhouwenzheng@126.com

    曹佳,E-mail:caojia1962@126.com

  • 中图分类号: R181.34;R994.6;R714.25

Association between short-term air pollution exposure and placental abruption: a nested case-control study

Funds: 

National Key Research and Development Program of China 2022YFC2702900

More Information
  • 摘要:   目的  探索大气污染短期暴露与胎盘早剥发病风险的关联。  方法  采用巢式病例对照研究,以重庆市大型出生队列2018年7月31日—2022年7月31日新发798例胎盘早剥孕妇作为病例组,按照年龄、孕周、孕次、产次和分娩日期的匹配因素以1∶4的比例匹配,匹配未发生胎盘早剥的对照组3 192例。通过机器学习算法估算研究期间6种空气污染物(PM10、PM2.5、NO2、CO、O3和SO2)及气象因素数据集,并与每位研究对象居住地址的经纬度匹配。构建基于条件logistic回归的分布滞后非线性模型探索大气污染物短期暴露与胎盘早剥的暴露-反应关系,控制环境温度、相对湿度、风速、大气压力和归一化差异植被指数,以及孕妇年龄、孕周、孕次、产次、分娩季节、是否经历疫情、家庭住址的影响。  结果  单污染物模型结果显示,累积暴露4~7 d内,NO2与胎盘早剥发病风险升高存在显著关联,NO2每四分位数间距增加对应的OR值及95% CI为1.38(95% CI: 1.11~1.73, P<0.001)~1.54(95% CI: 1.18~2.02, P<0.001)。总体剂量-反应关系曲线显示,随着NO2浓度升高,胎盘早剥发病风险增加,暴露-反应曲线近似呈线性,其他污染物短期暴露与胎盘早剥风险的关联均无统计学意义(均P>0.05)。  结论  NO2短期暴露与胎盘早剥急性发病风险升高存在关联,可能是胎盘早剥的影响因素,未来有必要对此进一步开展研究加以验证。
  • 图  1  大气污染物与气象因素Spearman相关性热图

    Temp: 环境温度;RH: 相对湿度;WS: 风速;Atm: 大气压力;NDVI: 归一化差异植被指数。
    a: P<0.05;b: P<0.01。

    Figure  1.  Heat map of Spearman correlation between air pollutants and meteorological factors

    Temp: temperature; RH: relative humidity; WS: wind speed; Atm: atmospheric pressure; NDVI: normalized difference vegetation index.
    a: P < 0.05;b: P < 0.01.

    图  2  不同累积滞后时空气污染物与胎盘早剥的关联

    通过分布滞后非线性模型进行估计,调整了环境温度、相对湿度、风速、大气压力和归一化差异植被指数,以及年龄、孕周、孕次、产次、家庭住址,是否经历疫情和分娩季节。计算空气污染物每IQR升高对应的OR值及95% CI

    Figure  2.  Association between lag cumulative exposure of air pollutants and placental abruption

    Estimated by the distributed lag non-linear model, adjusted for ambient temperature, relative humidity, weed speed, atmospheric pressure, and normalized difference vegetation index; as well as age, gestational weeks, gravidity, parity, residential address, whether experienced the epidemic, and delivery season. The ORs and 95% CI were calculated for each IQR increase in each air pollutants.

    图  3  大气污染物与胎盘早剥风险总体剂量-反应关系图

    通过分布滞后非线性模型进行估计,调整了环境温度、相对湿度、风速、大气压力和归一化差异植被指数,以及年龄、孕周、孕次、产次、家庭住址,是否经历疫情及分娩季节。

    Figure  3.  Overall dose-response relationship between air pollutants and the risk of placental abruption

    Estimated by the distributed lag non-linear model, adjusted for ambient temperature, relative humidity, weed speed, atmospheric pressure, and normalized difference vegetation index; as well as age, gestational weeks, gravidity, parity, residential address, whether experienced the epidemic, and delivery season.

    表  1  一般人口学特征与环境因素分布

    Table  1.   Distribution of demographic characteristics and environmental factors

    变量 Variable 对照组 Control group
    (n=3 192)
    病例组 Case group
    (n=798)
    P
    value
    年龄/岁 Age/years 29.4±4.4 29.6±4.5 0.217
    孕周/周 Gestational week/weeks 37.9±2.1 37.3±2.3 < 0.001
    出生身长/cm Birth length/cm 49.1±2.4 48.5±2.8 < 0.001
    出生体重/g Birth weight/g 3 119.5±547.1 2 941.2±576.6 < 0.001
    孕次 Gravidity < 0.001
       初孕 First pregnancy 899(28.2) 322(40.4)
       非初孕 Non-first pregnancy 2 293(71.8) 476(59.6)
    产次 Pravity < 0.001
       初产 First birth 1 458(45.7) 498(62.4)
       非初产 Non-first birth 1 734(54.3) 300(37.6)
    经历疫情 Whether experienced the epidemic 0.609
       否 Yes 1 151(36.1) 280(35.1)
       是 No 2 041(63.9) 518(64.9)
    出生季节  Delivery season 0.474
       暖季 Warm seasons 1 777(55.7) 433(54.3)
       冷季 Cool seasons 1 415(44.3) 365(45.7)
    家庭住址 Residential address < 0.001
       主城区 Urban 1 150(36.0) 494(61.9)
       区县 Countryside 2 042(64.0) 304(38.1)
    患有 HDP Whether had HDP 0.287
       是 Yes 199(6.2) 58(7.3)
       否 No 2 993(93.8) 740(92.7)
    环境因素 Environmental factors
       PM10/(g·m-3) 48.0±26.4 50.5±27.6 0.012
       PM2.5/(g·m-3) 30.0±20.4 31.9±21.8 0.025
       NO2/(g·m-3) 21.3±9.8 24.5±11.2 < 0.001
       CO/(mg·m-3) 0.7±0.2 0.7±0.2 0.077
       O3/(g·m-3) 45.8±21.1 46.3±22.8 0.940
       SO2/(g·m-3) 9.3±2.4 9.3±2.5 0.154
       温度/℃ Temperature/℃ 18.1±7.3 18.7±7.3 0.029
       相对湿度/% Relative humidity/% 74.8±12.3 73.0±12.7 < 0.001
       风速/(m·s-1) Wind speed/(m·s-1) 1.1±0.7 1.1±0.7 0.044
       气压/hpa Air pressure/hpa 952.7±26.2 962.5±18.2 < 0.001
       NDVI 3 701.3±1 713.4 3 427.9±1 587.3 < 0.001
    注:HDP,妊娠期高血压疾病;NDVI,归一化差异植被指数。
    ①暖季:5—10月,冷季:11—次年4月;②以人数(占比%)或x±s表示;③使用Wilcoxon检验或χ2检验比较组间差异,P < 0.05为差异有统计学意义。
    Note: HDP, hypertensive disorders of pregnancy; NDVI, normalized difference vegetation index.
    ① Warm season: May-October, cold season: November-April of the following year; ② Number of people(proportion/%) or x±s; ③Differences between two groups were compared using the Wilcoxon test or the chi-square test. P < 0.05 indicates statistically significant.
    下载: 导出CSV

    表  2  敏感性分析

    Table  2.   Sensitivity analysis

    大气污染
    Air pollution
    双污染物模型  Dual-pollution model
    PM10 PM2.5 NO2 CO O3 SO2
    PM10 1.77(0.89~3.50) 0.75(0.53~1.08) 1.09(0.78~1.52) 1.05(0.77~1.44) 1.06(0.76~1.47)
    PM2.5 0.57(0.30~1.08) 0.70(0.51~0.97) 0.93(0.68~1.28) 0.91(0.67~1.22) 0.92(0.68~1.26)
    NO2 1.55(1.23~1.97) 1.56(1.24~1.95) 1.49(1.20~1.86) 1.38(1.12~1.70) 1.41(1.14~1.73)
    CO 0.88(0.70~1.11) 0.91(0.72~1.15) 0.80(0.64~1.01) 0.90(0.73~1.12) 0.92(0.74~1.14)
    O3 0.83(0.59~1.18) 0.84(0.59~1.19) 0.90(0.63~1.29) 0.87(0.61~1.23) 0.84(0.59~1.19)
    SO2 0.96(0.81~1.15) 0.98(0.83~1.16) 0.93(0.79~1.11) 0.98(0.83~1.17) 0.98(0.83~1.16)
    大气污染
    Air pollution
    去除匹配变量
    Remove the match variable
    单因素模型
    Single factor model
    额外调整HDP
    Additional adjustment HDP
    PM10 1.05(0.77~1.43) 2.23(1.75~2.85) 1.02(0.74~1.39)
    PM2.5 0.92(0.69~1.24) 2.00(1.58~2.52) 0.89(0.66~1.20)
    NO2 1.41(1.15~1.71) 2.28(1.98~2.64) 1.38(1.12~1.70)
    CO 0.88(0.71~1.08) 1.27(1.07~1.51) 0.90(0.73~1.12)
    O3 0.82(0.59~1.15) 1.08(0.80~1.45) 0.84(0.59~1.19)
    SO2 0.94(0.81~1.11) 0.91(0.79~1.05) 0.97(0.82~1.15)
    注:1. HDP,妊娠期高血压疾病。
    2. 通过分布滞后非线性模型进行估计,计算空气污染物每IQR升高对应的OR值及95% CI
    3. “—”表示无数据。
    ①双污染物模型中每次额外纳入另一种污染物进行分析; ②在去除匹配变量模型中调整了环境温度、相对湿度、风速、大气压力和归一化差异植被指数,以及家庭住址,是否经历疫情和分娩季节; ③单因素模型中未调整任何协变量; ④额外纳入HDP进行调整。
    Note: 1. HDP, hypertensive disorders of pregnancy.
    2. Estimated by the distributed lag non-linear model, OR and 95% CI were calculated for each IQR increase in each air pollutants.
    3. "—" indicates no date available.
    ①Another pollutant is additionally included for analysis each time in the dual-pollutant model; ② Temperature, relative humidity, wind speed, atmospheric pressure and normalized difference vegetation index, as well as residential address, whether experienced the epidemic and delivery season were adjusted in the model of removing variables; ③ No covariates were adjusted in the univariate model; ④ Additional adjustment of HDP.
    下载: 导出CSV
  • [1] Brandt JS, Ananth CV. Placental abruption at near-term and term gestations: pathophysiology, epidemiology, diagnosis, and management[J]. Am J Obstet Gynecol, 2023, 228(5S): S1313-S1329. DOI: 10.1016/j.ajog.2022.06.059.
    [2] Downes KL, Grantz KL, Shenassa ED. Maternal, labor, delivery, and perinatal outcomes associated with placental abruption: a systematic review[J]. Am J Perinatol, 2017, 34(10): 935-957. DOI: 10.1055/s-0037-1599149.
    [3] Riihimäki O, Metsäranta M, Paavonen J, et al. Placental abruption and child mortality[J]. Pediatrics, 2018, 142(2): e20173915. DOI: 10.1542/peds.2017-3915.
    [4] 林琳, 陈艳红, 杜丽丽, 等. 单胎妊娠发生胎盘早剥的危险因素及母儿结局分析: ——一项9年的回顾性临床研究[J]. 中国妇幼健康研究, 2020, 31(12): 1585-1591. DOI: 10.3969/j.issn.1673-5293.2020.012.001.

    Lin L, Chen YH, Du LL, et al. Risk factors of placental abruption in singleton pregnancy and maternal-fetal outcomes—a 9-year retrospective study[J]. Chinese Journal of Woman and Child Health Research, 2020, 31(12): 1585-1591. DOI: 10.3969/j.issn.1673-5293.2020.012.001.
    [5] Oyelese, Ananth CV. Placental abruption[J]. Obstet Gynecol, 2006, 108(4): 1005-1016. DOI: 10.1097/01.aog.0000239439.04364.9a.
    [6] Tikkanen M. Placental abruption: epidemiology, risk factors and consequences[J]. Acta Obstet Gynecol Scand, 2011, 90(2): 140-149. DOI: 10.1111/j.1600-0412.2010.01030.x
    [7] Schifano P, Asta F, Dadvand P, et al. Heat and air pollution exposure as triggers of delivery: a survival analysis of population-based pregnancy cohorts in Rome and Barcelona[J]. Environ Int, 2016, 88: 153-159. DOI: 10.1016/j.envint.2015.12.013.
    [8] Darrow LA, Klein M, Flanders WD, et al. Ambient air pollution and preterm birth: a time-series analysis[J]. Epidemiology (Cambridge, Mass), 2009, 20(5): 689-698. DOI: 10.1097/EDE.0b013e3181a7128f.
    [9] Ming X, He ZY, Li YN, et al. The short-term effects of air pollution exposure on preterm births in Chongqing, China: 2015-2020[J]. Environ Sci Pollut Res Int, 2023, 30(18): 51679-51691. DOI: 10.1007/s11356-023-25624-2.
    [10] Xiao H, Yao CY, Qi ZL, et al. Association between maternal short-term exposure to ambient air pollution and the risk of fetal distress: A matched case-control study[J]. Sci Total Environ, 2023, 860: 160438. DOI: 10.1016/j.scitotenv.2022.160438.
    [11] Ananth CV, Kioumourtzoglou MA, Huang YM, et al. Exposures to air pollution and risk of acute-onset placental abruption: a case-crossover study[J]. Epidemiology (Cambridge, Mass), 2018, 29(5): 631-638. DOI: 10.1097/EDE.0000000000000859.
    [12] Michikawa T, Morokuma S, Yamazaki S, et al. Air pollutant exposure within a few days of delivery and placental abruption in Japan[J]. Epidemiology (Cambridge, Mass), 2017, 28(2): 190-196. DOI: 10.1097/EDE.0000000000000605.
    [13] Zhou WZ, Ming X, Yang YP, et al. Association between maternal exposure to ambient air pollution and the risk of preterm birth: a birth cohort study in Chongqing, China, 2015-2020[J]. Int J Environ Res Public Health, 2022, 19(4): 2211. DOI: 10.3390/ijerph19042211.
    [14] Mi T, Tang D, Fu JB, et al. Data augmentation for bias correction in mapping PM2. 5 based on satellite retrievals and ground observations[J]. Geosci Front, 2024, 15(1): 101686. DOI: 10.1016/j.gsf.2023.101686.
    [15] Fu JB, Tang D, Grieneisen ML, et al. A machine learning-based approach for fusing measurements from standard sites, low-cost sensors, and satellite retrievals: Application to NO2 pollution hotspot identification[J]. Atmos Environ, 2023, 302: 119756: 119756. DOI: 10.1016/j.atmosenv.2023.119756.
    [16] Huete AR, Didan K, Leeuwen WJ DV, et al. MODIS VEGETATION INDEX (MOD 13) ALGORITHM THEORETICAL BASIS DOCUMENT Version 3. 1 Principal Investigators, F, 1999[C].
    [17] Mills IC, Atkinson RW, Kang S, et al. Quantitative systematic review of the associations between short-term exposure to nitrogen dioxide and mortality and hospital admissions[J]. BMJ Open, 2015, 5(5): e006946. DOI: 10.1136/bmjopen-2014-006946.
    [18] Mills NL, Törnqvist H, Robinson SD, et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis[J]. Circulation, 2005, 112(25): 3930-3936. DOI: 10.1161/CIRCULATIONAHA.105.588962.
    [19] Pekkanen J, Brunner EJ, Anderson HR, et al. Daily concentrations of air pollution and plasma fibrinogen in London[J]. Occup Environ Med, 2000, 57(12): 818-822. DOI: 10.1136/oem.57.12.818.
    [20] Veras MM, Damaceno-Rodrigues NR, Caldini EG, et al. Particulate urban air pollution affects the functional morphology of mouse placenta[J]. Biol Reprod, 2008, 79(3): 578-584. DOI: 10.1095/biolreprod.108.069591.
    [21] van den Hooven EH, Pierik FH, de Kluizenaar Y, et al. Air pollution exposure and markers of placental growth and function: the generation R study[J]. Environ Health Perspect, 2012, 120(12): 1753-1759. DOI: 10.1289/ehp.1204918.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  23
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-03-25
  • 网络出版日期:  2024-05-17
  • 刊出日期:  2024-04-10

目录

    /

    返回文章
    返回