• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

校正弱工具变量偏倚的孟德尔随机化方法比较及其应用

杨博然 彭刘庆 高雪 王菊平 王彤

杨博然, 彭刘庆, 高雪, 王菊平, 王彤. 校正弱工具变量偏倚的孟德尔随机化方法比较及其应用[J]. 中华疾病控制杂志, 2024, 28(4): 490-496. doi: 10.16462/j.cnki.zhjbkz.2024.04.019
引用本文: 杨博然, 彭刘庆, 高雪, 王菊平, 王彤. 校正弱工具变量偏倚的孟德尔随机化方法比较及其应用[J]. 中华疾病控制杂志, 2024, 28(4): 490-496. doi: 10.16462/j.cnki.zhjbkz.2024.04.019
YANG Boran, PENG Liuqing, GAO Xue, WANG Juping, WANG Tong. Comparison and application of Mendelian randomization methods for correcting weak instrumental variable bias[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(4): 490-496. doi: 10.16462/j.cnki.zhjbkz.2024.04.019
Citation: YANG Boran, PENG Liuqing, GAO Xue, WANG Juping, WANG Tong. Comparison and application of Mendelian randomization methods for correcting weak instrumental variable bias[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(4): 490-496. doi: 10.16462/j.cnki.zhjbkz.2024.04.019

校正弱工具变量偏倚的孟德尔随机化方法比较及其应用

doi: 10.16462/j.cnki.zhjbkz.2024.04.019
基金项目: 

国家自然科学基金 81872715

国家自然科学基金 82103949

山西省基础研究计划资助项目 20210302124186

山西省基础研究计划资助项目 202103021223234

详细信息
    通讯作者:

    王彤,E-mail:tongwang@sxmu.edu.cn

  • 中图分类号: R195.1

Comparison and application of Mendelian randomization methods for correcting weak instrumental variable bias

Funds: 

National Natural Science Foundation of China 81872715

National Natural Science Foundation of China 82103949

Basic Research Project of Shanxi Province, China 20210302124186

Basic Research Project of Shanxi Province, China 202103021223234

More Information
  • 摘要:   目的  探究无工具变量可用或需评估弱工具变量偏倚对结果的影响时,为选择合适的两样本孟德尔随机化(two-sample Mendelian randomization, TwoSampleMR)方法提供建议。  方法  分别在无多效性、均衡多效性、正向多效性模拟情形下,变换工具变量强度考察弱工具变量对修正权重的逆方差加权模型(inverse variance weighting with modified weights, MW-IVW)、稳健校正轮廓评分(robust adjusted profile score, RAPS)孟德尔随机化方法和基于混合正态分布的孟德尔随机化模型(MR mixture model, MR-Mix)3种方法的影响。正向多效性和弱工具变量同时存在时,模拟不同个数工具变量对MR-Mix的影响。MR-Mix为主分析方法,其余2方法作为敏感性分析,探究BMI、高密度脂蛋白(high-density lipoprotein, HDL)、低密度脂蛋白(low-density lipoprotein, LDL)、三酰甘油(triglyceride,TG)以及总胆固醇(total cholesterol, TC)与血清尿酸之间的因果关联。  结果  无多效性和均衡多效性情形下,MW-IVW表现最佳,MR-Mix表现最差。正向多效性情况下,MR-Mix表现最好,MW-IVW表现最差。BMI(β=0.280, P=0.003)和TG(β=0.370, P < 0.001)是血清尿酸升高的危险因素,HDL(β=-0.250, P=0.002)是血清尿酸的保护因素。  结论  在无多效性和均衡多效性情形下,MW-IVW有更好的统计学性能;但当正向多效性存在时,MR-Mix有更好的稳健性。BMI和TG为血清尿酸升高的危险因素。
  • 图  1  弱工具变量个数对MR-Mix效能的影响

    图A: 无多效性情形弱工具变量个数对MR-Mix效能的影响; 图B: 均衡多效性情形弱工具变量个数对MR-Mix效能的影响; 图C: 正向多效性情形弱工具变量个数对MR-Mix效能的影响。

    Figure  1.  Effect of the number of weak tool variables on the performance of MR-Mix

    Figure A: illustrates the effect of the number of weak instrumental variables on the efficiency of MR-Mix under the scenario of no pleiotropy; Figure B: illustrates the effect of the number of weak instrumental variables on the efficiency of MR-Mix under the scenario of balanced pleiotropy; Figure C: illustrates the effect of the number of weak instrumental variables on the efficiency of MR-Mix under the scenario of directional pleiotropy.

    表  1  不同强度工具变量下各方法表现

    Table  1.   The performance of methods under different intensity tool variables

    Mean F MW-IVW RAPS MR-Mix
    $\widehat{\beta}$(sx) TIE/P CF $\widehat{\beta}$(sx) TIE/P CF $\widehat{\beta}$(sx) TIE/P CF
    无多效性方案No pleiotropy
      β=0
      100 0.000(0.008) 0.055 0.948 0.000(0.008) 0.052 0.949 0.000(1.942) 0.003 0.998
      50 0.000(0.008) 0.057 0.950 0.000(0.008) 0.053 0.948 0.000(1.308) 0.005 0.995
      25 0.000(0.007) 0.051 0.955 0.000(0.008) 0.045 0.955 0.000(0.840) 0.005 0.995
      10 0.000(0.006) 0.035 0.970 0.000(0.015) 0.050 0.951 0.000(0.897) 0.006 0.994
      β=0.05
      100 0.050(0.008) 1.000 0.950 0.051(0.008) 1.000 0.951 0.050(0.872) 0.458 0.995
      50 0.050(0.008) 0.999 0.952 0.051(0.008) 0.999 0.956 0.051(0.513) 0.451 0.997
      25 0.050(0.008) 1.000 0.965 0.054(0.009) 1.000 0.963 0.055(0.371) 0.420 0.999
      10 0.050(0.007) 1.000 0.962 0.061(0.012) 1.000 0.958 0.060(0.251) 0.431 0.978
      β=0.1
      100 0.100(0.008) 1.000 0.952 0.101(0.008) 1.000 0.957 0.101(2.821) 0.683 0.997
      50 0.100(0.008) 1.000 0.954 0.102(0.009) 1.000 0.961 0.102(0.439) 0.673 0.996
      25 0.100(0.008) 1.000 0.962 0.105(0.010) 1.000 0.962 0.106(0.386) 0.702 0.998
      10 0.100(0.008) 1.000 0.958 0.111(0.014) 1.000 0.977 0.100(0.117) 0.752 0.952
    均衡多效性方案Balanced pleiotropy
      β=0
      100 0.000(0.027) 0.058 0.949 0.000(0.036) 0.070 0.930 0.000(0.723) 0.007 0.993
      50 0.000(0.010) 0.056 0.947 0.000(0.010) 0.075 0.925 0.000(0.753) 0.021 0.976
      25 0.000(0.009) 0.057 0.946 0.000(0.011) 0.068 0.932 0.000(0.641) 0.019 0.981
      10 0.000(0.008) 0.047 0.958 0.000(0.015) 0.061 0.939 0.000(0.493) 0.034 0.966
      β=0.05
      100 0.050(0.010) 0.996 0.951 0.051(0.010) 0.994 0.929 0.044(1.250) 0.503 0.981
      50 0.050(0.009) 0.995 0.950 0.052(0.010) 0.993 0.930 0.048(0.652) 0.496 0.986
      25 0.050(0.010) 0.998 0.959 0.055(0.011) 0.994 0.922 0.053(3.862) 0.443 0.988
      10 0.050(0.009) 1.000 0.972 0.057(0.015) 0.999 0.938 0.060(2.129) 0.330 0.989
      β=0.1
      100 0.100(0.009) 1.000 0.954 0.101(0.010) 1.000 0.931 0.094(0.650) 0.699 0.987
      50 0.100(0.010) 1.000 0.960 0.103(0.011) 1.000 0.934 0.097(0.844) 0.645 0.986
      25 0.100(0.011) 1.000 0.969 0.108(0.012) 1.000 0.915 0.105(1.611) 0.528 0.996
      10 0.100(0.010) 1.000 0.964 0.100(0.017) 1.000 0.947 0.100(0.338) 0.611 0.964
    正向多效性方案Directional pleiotropy
      β=0
      100 0.063(0.029) 0.477 0.544 0.000(0.007) 0.128 0.872 0.006(0.025) 0.055 0.945
      50 0.060(0.030) 0.465 0.567 0.000(0.006) 0.193 0.807 0.002(0.041) 0.091 0.909
      25 0.055(0.029) 0.379 0.642 0.001(0.005) 0.307 0.693 0.000(0.063) 0.044 0.956
      10 0.021(0.026) 0.373 0.670 0.000(0.004) 0.571 0.429 0.001(0.034) 0.094 0.906
      β=0.05
      100 0.112(0.030) 1.000 0.548 0.051(0.007) 1.000 0.866 0.050(0.025) 0.909 0.943
      50 0.110(0.029) 0.998 0.570 0.052(0.007) 1.000 0.824 0.045(0.031) 0.893 0.915
      25 0.105(0.030) 0.985 0.665 0.055(0.006) 1.000 0.710 0.048(0.030) 0.886 0.960
      10 0.107(0.030) 0.973 0.699 0.064(0.006) 1.000 0.398 0.058(0.054) 0.888 0.784
      β=0.1
      100 0.162(0.030) 1.000 0.550 0.101(0.007) 1.000 0.885 0.098(0.021) 0.955 0.953
      50 0.160(0.030) 1.000 0.579 0.103(0.007) 1.000 0.833 0.085(0.161) 0.943 0.921
      25 0.156(0.031) 1.000 0.673 0.107(0.007) 1.000 0.765 0.094(0.029) 0.934 0.942
      10 0.160(0.031) 1.000 0.660 0.117(0.009) 1.000 0.566 0.098(0.139) 0.901 0.659
    注:Mean F, 平均因果效应估计值; MW-IVW, 修正权重的逆方差加权方法; RAPS, 稳健校正的轮廓评分模型; MR-Mix, 效应大小混合正态分布的孟德尔随机化方法; sx, 标准误;TIE, 一型错误率; CF, 95% CI覆盖率。
    Note: Mean F, average causal effect estimates; MW-IVW, inverse variance weighting with modified weights; RAPS, robust adjusting profile score; MR-Mix, Mendelian Randomization mixture model; sx, standard error; TIE, type I error; CF, 95% CI coverage frequency.
    下载: 导出CSV

    表  2  强、弱工具变量分析结果

    Table  2.   Analysis results of strong and weak instrumental variables

    暴露
    Exposure
    工具变量
    Instrumental Variables
    方法
    Methods
    SNP个数
    nSNPs
    β值value
    (95% CI)
    P
    value
    BMI 强工具变量Strong instrumental variables IVW 20 -0.029(-0.064~0.006) 0.110
    WME 20 -0.025(-0.031~-0.009) 0.012
    MR-Egger 20 -0.065(-0.128~-0.002) 0.056
    Egger-intercept 0.000(-0.002~0.010) 0.191
    弱工具变量Weak instrumental variables MW-IVW 45 -0.009(-0.056~0.038) 0.700
    RAPS 45 -0.013(-0.021~0.005) 0.024
    MR-Mix 45 -0.020(-0.042~0.002) 0.058
    HDL 强工具变量Strong instrumental variables IVW 21 -0.030(-0.085~0.025) 0.284
    WME 21 -0.005(-0.023~0.013) 0.606
    MR-Egger 21 0.052(-0.040~0.144) 0.284
    Egger-intercept -0.008(-0.016~0.000) 0.048
    弱工具变量Weak instrumental variables M-IVW 51 -0.039(-0.080~0.002) 0.067
    RAPS 51 -0.014(-0.024~-0.004) 0.005
    MR-Mix 51 0.000(-0.020~0.019) 1.000
    LDL 强工具变量Strong instrumental variables IVW 21 -0.003(-0.070~0.064) 0.938
    WME 21 0.003(-0.019~0.025) 0.752
    MR-Egger 21 0.074(-0.042~0.190) 0.222
    Egger-intercept -0.008(-0.018~0.002) 0.131
    弱工具变量Weak instrumental variables MW-IVW 51 0.006(-0.037~0.049) 0.785
    RAPS 51 0.007 (-0.003~0.017) 0.169
    MR-Mix 51 -0.010(-0.026~0.006) 0.239
    TG 强工具变量Strong instrumental variables IVW 21 0.109(-0.060~0.278) 0.203
    WME 21 0.007(-0.011~0.025) 0.400
    MR-Egger 21 -0.016(-0.316~0.284) 0.917
    Egger-intercept 0.012(-0.013~0.037) 0.339
    弱工具变量Weak instrumental variables MW-IVW 51 0.111(0.011~0.211) 0.030
    RAPS 51 0.446(0.428~0.464) 0.000
    MR-Mix 51 0.010(-0.033~0.053) 0.651
    TC 强工具变量Strong instrumental variables IVW 25 0.049(-0.045~0.143) 0.300
    WME 25 0.034(-0.003~0.071) 0.073
    MR-Egger 25 0.143(-0.024~0.310) 0.105
    Egger-intercept -0.009(-0.023~0.005) 0.197
    弱工具变量Weak instrumental variables MW-IVW 53 0.047(-0.016~0.110) 0.146
    RAPS 53 0.053(0.029~0.077) 0.534
    MR-Mix 53 0.030(-0.025~0.085) 0.280
    注:HDL, 高密度脂蛋白; LDL, 低密度脂蛋白; TG, 三酰甘油; TC, 总胆固醇; IVW, 逆方差加权方法; MWE, 加权中位数模型; MR-Egger, 孟德尔随机化-Egger方法; Egger-intercept, MR-Egger方法的截距项; MW-IVW, 修正权重的逆方差加权方法; RAPS, 稳健校正的轮廓评分模型; MR-Mix, 效应大小混合正态分布的孟德尔随机化方法。
    Note: HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG, triglyceride; TC, total cholesterol; IVW, inverse variance weighting; MWE, weighted median estimator; MW-IVW, inverse variance weighting with modified weights; RAPS, robust adjusting profile score; MR-Mix, Mendelian randomization mixture model.
    下载: 导出CSV

    表  3  逆向MR强、弱工具变量分析结果

    Table  3.   Analysis results of strong and weak instrumental variables of reverse MR

    结局Outcome 工具变量
    Instrumental variables
    方法
    Methods
    SNP个数
    nSNPs
    β值value (95% CI) P
    value
    BMI 强工具变量Strong instrumental variables IVW 443 0.310(0.245~0.375) 7.799×10-21
    WME 443 0.306(0.243~0.369) 9.027×10-22
    MR-Egger 443 0.290(0.119~0.461) 9.153×10-4
    Egger-intercept 0.000(-0.002~0.002) 0.807
    弱工具变量Weak instrumental variables MW-IVW 638 0.312(0.259~0.365) 7.377×10-30
    RAPS 638 0.326(0.293~0.359) 0.000
    MR-Mix 638 0.280(0.023~0.537) 0.003
    HDL 强工具变量Strong instrumental variables IVW 109 -0.114(-0.181~-0.047) 0.0007
    WME 109 -0.007(-0.062~0.076) 0.851
    MR-Egger 109 -0.004(-0.104~0.096) 0.934
    Egger-intercept -0.004(-0.006~-0.002) 0.005
    弱工具变量Weak instrumental variables MW-IVW 178 -0.114(-0.169~-0.059) 4.570×10-5
    RAPS 178 -0.098(-0.151~-0.045) 0.0003
    MR-Mix 178 -0.250(-0.64~0.140) 0.002
    LDL 强工具变量Strong instrumental variables IVW 50 0.019(-0.193~0.191) 0.826
    WME 50 -0.017(-0.123~0.098) 0.755
    MR-Egger 50 0.124(-0.195~0.443) 0.450
    Egger-intercept -0.003(-0.013~0.007) 0.448
    弱工具变量Weak instrumental variables MW-IVW 97 -0.069(-0.149~0.011) 0.091
    RAPS 97 -0.070(-0.123~-0.017) 0.009
    MR-Mix 97 -0.050(-0.156~0.056) 0.356
    TG 强工具变量Strong instrumental variables IVW 174 0.223(0.154~0.292) 2.279×10-10
    WME 174 0.154(0.068~0.240) 0.0004
    MR-Egger 174 0.112(0.002~0.222) 4.661×10-2
    Egger-intercept 0.003(0.001~0.005) 0.013
    弱工具变量Weak instrumental variables MW-IVW 362 0.221(0.166~0.276) 2.012×10-15
    RAPS 362 0.229(0.192~0.266) 0.000
    MR-Mix 362 0.370(0.192~0.548) 4.436×10-5
    TC 强工具变量Strong instrumental variables IVW 77 -0.027(-0.105~0.051) 0.503
    WME 77 -0.045(-0.102~0.012) 0.121
    MR-Egger 77 0.069(-0.092~0.230) 0.405
    Egger-intercept -0.005(-0.013~0.003) 0.185
    弱工具变量Weak instrumental variables MW-IVW 125 -0.019(-0.082~-0.044) 0.560
    RAPS 125 -0.020(-0.049~0.009) 0.186
    MR-Mix 125 -0.040(-0.091~0.101) 0.127
    注:HDL, 高密度脂蛋白; LDL, 低密度脂蛋白; TG, 三酰甘油; TC, 总胆固醇; IVW, 逆方差加权方法; MWE, 加权中位数模型; MR-Egger, 孟德尔随机化-Egger方法; Egger-intercept, MR-Egger方法的截距项; MW-IVW, 修正权重的逆方差加权方法; RAPS, 稳健校正的轮廓评分模型; MR-Mix, 效应大小混合正态分布的孟德尔随机化方法。
    Note: HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG, triglyceride; TC, total cholesterol; IVW, inverse variance weighting; MWE, weighted median estimator; MW-IVW, inverse variance weighting with modified weights; RAPS, robust adjusting profile score; MR-Mix, Mendelian randomization mixture model.
    下载: 导出CSV
  • [1] Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist's dream?[J]. Epidemiology(Cambridge, Mass), 2006, 17(4): 360-372. DOI: 10.1097/01.ede.0000222409.00878.37.
    [2] Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization[J]. JAMA, 2017, 318(19): 1925-1926. DOI: 10.1001/jama.2017.17219.
    [3] Burgess S, Thompson S G. Use of allele scores as instrumental variables for Mendelian randomization[J]. Int J Epidemiol, 2013, 42(4): 1134-1144. DOI: 10.1093/ije/dyt093.
    [4] Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665. DOI: 10.1002/gepi.21758.
    [5] Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. DOI: 10.1093/ije/dyv080.
    [6] Bowden J, Davey Smith G, Haycock PC, et al. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. DOI: 10.1002/gepi.21965.
    [7] Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption[J]. Int J Epidemiol, 2019, 48(3): 728-742. DOI: 10.1093/ije/dyy258.
    [8] Qi G, Chatterjee N. Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects[J]. Nature Commun, 2019, 10(1): 1941. DOI: 10.1038/s41467-019-09432-2.
    [9] Zhao Q, Wang J, Hemani G, et al. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score[J]. Ann Stat, 2020, 48(3). DOI: 10.1214/19-AOS1866.
    [10] Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry[J]. Hum Mol Geneti, 2018, 27(20): 3641-3649. DOI: 10.1093/hmg/ddy271.
    [11] Richardson TG, Sanderson E, Palmer TM, et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis[J]. PLoS Med, 2020, 17(3): e1003062. DOI: 10.1371/journal.pmed.1003062
    [12] Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels[J]. Nat Genet, 2013, 45(11): 1274-1283. DOI: 10.1038/ng.2797.
    [13] Köttgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations[J]. Nat Genet, 2013, 45(2): 145-154. DOI: 10.1038/ng.2500.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  34
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 修回日期:  2024-01-06
  • 网络出版日期:  2024-05-17
  • 刊出日期:  2024-04-10

目录

    /

    返回文章
    返回