• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2018―2023年江苏省流行性感冒样病例特征与大气PM10和PM2.5的关联

马宇航 江欣 陈紫颖 戴启刚 刘志浩 胡建利 彭志行

马宇航, 江欣, 陈紫颖, 戴启刚, 刘志浩, 胡建利, 彭志行. 2018―2023年江苏省流行性感冒样病例特征与大气PM10和PM2.5的关联[J]. 中华疾病控制杂志, 2025, 29(5): 505-511. doi: 10.16462/j.cnki.zhjbkz.2025.05.002
引用本文: 马宇航, 江欣, 陈紫颖, 戴启刚, 刘志浩, 胡建利, 彭志行. 2018―2023年江苏省流行性感冒样病例特征与大气PM10和PM2.5的关联[J]. 中华疾病控制杂志, 2025, 29(5): 505-511. doi: 10.16462/j.cnki.zhjbkz.2025.05.002
MA Yuhang, JIANG Xin, CHEN Ziying, DAI Qigang, LIU Zhihao, HU Jianli, PENG Zhihang. Analysis of the characteristics of influenza-like illness cases and the association with two types of atmospheric particulate matter, PM10 and PM2.5, in Jiangsu Province from 2018 to 2023[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(5): 505-511. doi: 10.16462/j.cnki.zhjbkz.2025.05.002
Citation: MA Yuhang, JIANG Xin, CHEN Ziying, DAI Qigang, LIU Zhihao, HU Jianli, PENG Zhihang. Analysis of the characteristics of influenza-like illness cases and the association with two types of atmospheric particulate matter, PM10 and PM2.5, in Jiangsu Province from 2018 to 2023[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(5): 505-511. doi: 10.16462/j.cnki.zhjbkz.2025.05.002

2018―2023年江苏省流行性感冒样病例特征与大气PM10和PM2.5的关联

doi: 10.16462/j.cnki.zhjbkz.2025.05.002
基金项目: 

国家重点研发计划 2023YFC2306004

详细信息
    通讯作者:

    彭志行,E-mail: zhihangpeng@njmu.edu.cn

    胡建利,E-mail: jshjl@jscdc.cn

  • 中图分类号: R181

Analysis of the characteristics of influenza-like illness cases and the association with two types of atmospheric particulate matter, PM10 and PM2.5, in Jiangsu Province from 2018 to 2023

Funds: 

National Key Research and Development Program of China 2023YFC2306004

More Information
  • 摘要:   目的   分析2018―2023年江苏省流行性感冒(简称流感)样病例(influenza-like illness, ILI)流行特征,探讨不同人群ILI与可吸入颗粒物(inhalable particulate matter, PM10)和细颗粒物(fine particulate matter, PM2.5)之间的关联,为流感防控提供依据。   方法   基于2018―2023年江苏省各地级市流感监测哨点医院报告的ILI数据,描述ILI和ILI百分比(ILI%)的分布情况。采用分布滞后非线性模型与广义相加模型的联合嵌套模型,探讨PM2.5和PM10对不同人群ILI的影响。   结果   2018―2023年江苏省不同年份和地区的ILI分布情况不同(均P < 0.05)。ILI与PM2.5和PM10均呈正相关(r=0.35, P<0.05)。较高浓度的PM2.5和PM10对ILI具有滞后期不同的致病效应:PM2.5P75P95浓度下对全人群ILI发病风险有滞后0~1周的影响(RRmax=1.27, 95% CI: 1.00~1.62),而PM10P75P95浓度下对全人群ILI发病风险有滞后0~7周的影响(RRmax=1.27, 95% CI: 1.02~1.57)。不同人群ILI所受影响程度不同。   结论   高浓度PM2.5和PM10对ILI呈现显著但滞后期不同的致病风险:PM2.5以短期(滞后0~1周)效应为主,PM10则具有长期累积(滞后0~7周)效应。应关注PM2.5和PM10的浓度变化,在高污染时期减少人群外出,同时关注PM2.5和PM10的滞后效应,及时发出健康风险信号,加强对0~15岁人群的保护。
  • 图  1  不同滞后期的PM10与PM2.5对不同人群ILI的影响

    A、B:全人群; C、D:0~<15岁; E、F:15~<60岁; G、H:≥60岁; ILI:流行性感冒样病例; PM10:可吸入颗粒物; PM2.5:细颗粒物。

    Figure  1.  The impact of PM10 and PM2.5 on ILI in different populations with different lag periods

    A, B: general population; C, D: 0- < 15 years old; E, F: 15- < 60 years old; G, H: ≥60 years old; ILI: influenza-like illness; PM10: inhalable particulate matter; PM2.5: fine particulate matter.

    图  2  不同质量浓度与滞后期的PM10与PM2.5对不同人群ILI的影响3D图

    A、B:全人群; C、D:0~<15岁; E、F:15~<60岁; G、H:≥60岁; ILI:流行性感冒样病例; PM10:可吸入颗粒物; PM2.5:细颗粒物。

    Figure  2.  3D plot of the impact of PM10 and PM2.5 with different mass concentrations and lag periods on ILI in different populations

    A, B: general population; C, D: 0- < 15 years old; E, F: 15- < 60 years old; G, H: ≥60 years old; ILI: influenza-like illness; PM10: inhalable particulate matter; PM2.5: fine particulate matter.

    表  1  2018―2023年江苏省ILI发病情况

    Table  1.   Disease occurrence of ILI in Jiangsu Province from 2018 to 2023

    变量
    Variable
      ILI病例数
      Number of ILI cases
    门/急诊就诊数
    Number of outpatient/emergency visits
    ILI/% χ2
    value
    P
    value
    年份Year 359 774 < 0.001
      2018 1 063 218(21.59) 13 896 230(17.66) 7.65
      2019 966 951(19.63) 14 035 073(17.84) 6.89
      2020 544 411(11.05) 9 380 018(11.92) 5.80
      2021 489 077(9.93) 12 267 997(15.59) 3.99
      2022 533 407(10.83) 12 782 558(16.25) 4.17
      2023 1 328 233(26.97) 16 319 091(20.74) 8.14
    地区Region 47 266 < 0.001
      苏北Northern Jiangsu 1 019 725(20.70) 19 240 113(24.45) 5.30
      苏中Central Jiangsu 690 483(14.02) 9 615 723(12.22) 7.18
      苏南Southern Jiangsu 3 215 089(65.28) 49 825 131(63.33) 6.45
    年龄/岁Age/years
      0~<5 2 723 035(55.29)
      5~<15 1 451 680(29.47)
      15~<25 202 182(4.11)
      25~<60 406 309(8.25)
      ≥60 142 091(2.88)
    合计Total 4 925 297(100.00) 78 680 967(100.00) 6.26
    注:ILI,流行性感冒样病例; “—”表示数据无法获取。
    ①以人数(占比/%)表示。
    Note: ILI, influenza-like illness; "—" indicates that the data cannot be obtained.
    ① Number of people (proportion/%).
    下载: 导出CSV

    表  2  PM10与PM2.5对不同人群ILI影响的累积滞后效应

    Table  2.   Cumulative lag effects of PM10 and PM2.5 on ILI in different populations

    变量Variable RR值value (95% CI)
    0周weeks 0~1周weeks 0~4周weeks 0~7周weeks
    全人群General population/(μg·m-3)
      P75(PM2.5) 1.08(1.00~1.18) 1.08(1.00~1.17) 1.01(0.96~1.07) 0.92(0.85~0.99)
      P95(PM2.5) 1.27(1.00~1.62) 1.26(1.00~1.59) 1.04(0.88~1.22) 0.78(0.62~0.98)
      P75(PM10) 1.00(0.92~1.09) 0.96(0.88~1.05) 0.99(0.93~1.05) 1.09(1.01~1.18)
      P95(PM10) 1.00(0.80~1.27) 0.91(0.72~1.14) 0.96(0.82~1.13) 1.27(1.02~1.57)
    0~<15岁0-<15 years old/(μg·m-3)
      P75(PM2.5) 1.10(1.01~1.19) 1.08(1.00~1.17) 1.00(0.95~1.06) 0.92(0.85~0.99)
      P95(PM2.5) 1.31(1.02~1.68) 1.26(0.99~1.60) 1.01(0.85~1.19) 0.78(0.61~0.98)
      P75(PM10) 0.98(0.90~1.07) 0.96(0.88~1.05) 0.99(0.94~1.06) 1.10(1.01~1.19)
      P95(PM10) 0.95(0.74~1.21) 0.90(0.71~1.14) 0.99(0.84~1.16) 1.29(1.04~1.60)
    15~<60岁15-<60 years old/(μg·m-3)
      P75(PM2.5) 1.03(0.91~1.16) 1.10(0.97~1.24) 1.08(0.99~1.18) 0.92(0.81~1.05)
      P95(PM2.5) 1.09(0.76~1.55) 1.32(0.92~1.88) 1.25(0.97~1.62) 0.79(0.54~1.15)
      P75(PM10) 1.12(0.99~1.27) 0.98(0.86~1.12) 0.93(0.84~1.03) 1.06(0.93~1.21)
      P95(PM10) 1.35(0.97~1.88) 0.95(0.67~1.36) 0.83(0.63~1.08) 1.16(0.82~1.66)
    ≥60岁≥60 years old/(μg·m-3)
      P75(PM2.5) 1.07(0.95~1.20) 1.02(0.90~1.14) 1.04(0.95~1.14) 0.91(0.80~1.04)
      P95(PM2.5) 1.21(0.85~1.71) 1.05(0.74~1.48) 1.13(0.86~1.47) 0.76(0.52~1.12)
      P75(PM10) 1.09(0.97~1.24) 1.05(0.93~1.19) 0.94(0.85~1.04) 1.07(0.94~1.21)
      P95(PM10) 1.27(0.92~1.77) 1.14(0.81~1.58) 0.85(0.65~1.11) 1.19(0.84~1.68)
    注:ILI,流行性感冒样病例; PM10,可吸入颗粒物; PM2.5,细颗粒物。
    Note: ILI, influenza-like illness; PM10, inhalable particulate matter; PM2.5, fine particulate matter.
    下载: 导出CSV
  • [1] Uyeki TM, Hui DS, Zambon M, et al. Influenza[J]. Lancet, 2022, 400(10353): 693-706. DOI: 10.1016/S0140-6736(22)00982-5.
    [2] 庄雅丽, 卢捷, 吴树凯, 等. 广东省2015-2022年流感暴发疫情特征分析[J]. 中华流行病学杂志, 2023, 44(6): 942-948. DOI: 10.3760/cma.j.cn112338-20221010-00867.

    Zhuang YL, Lu J, Wu SK, et al. Epidemiologic characteristics and influencing factors of influenza outbreaks in Guangdong Province, 2015-2022[J]. Chin J Epidemiol, 2023, 44(6): 942-948. DOI: 10.3760/cma.j.cn112338-20221010-00867.
    [3] GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the global burden of disease study 2021[J]. Lancet, 2024, 403(10440): 2162-2203. DOI: 10.1016/S0140-6736(24)00933-4.
    [4] Li XG, Xu J, Wang W, et al. Air pollutants and outpatient visits for influenza-like illness in Beijing, China[J]. PeerJ, 2021, 9: e11397. DOI: 10.7717/peerj.11397.
    [5] Yu LJ, Li XL, Wang YH, et al. Short-term exposure to ambient air pollution and influenza: a multicity study in China[J]. Environ Health Perspect, 2023, 131(12): 127010. DOI: 10.1289/EHP12146.
    [6] Sun R, Tao J, Tang N, et al. Air pollution and influenza: a systematic review and meta-analysis[J]. Iran J Public Health, 2024, 53(1): 1-11. DOI: 10.18502/ijph.v53i1.14678.
    [7] Zeng H, Cai MH, Li SQ, et al. Epidemiological characteristics of seasonal influenza under implementation of zero-COVID-19 strategy in China[J]. J Infect Public Health, 2023, 16(8): 1158-1166. DOI: 10.1016/j.jiph.2023.05.014.
    [8] Li ZR, Xiong Y, Long J, et al. Resurgence of influenza during COVID-19 in Chongqing, China: a retrospective analysis[J]. J Med Virol, 2023, 95(11): e29249. DOI: 10.1002/jmv.29249.
    [9] Cohen R, Ashman M, Taha MK, et al. Pediatric infectious disease group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap?[J]. Infect Dis Now, 2021, 51(5): 418-423. DOI: 10.1016/j.idnow.2021.05.004.
    [10] Liu XF, Peng Y, Chen Z, et al. Impact of non-pharmaceutical interventions during COVID-19 on future influenza trends in Mainland China[J]. BMC Infect Dis, 2023, 23(1): 632. DOI: 10.1186/s12879-023-08594-1.
    [11] Davis WW, Mott JA, Olsen SJ. The role of non-pharmaceutical interventions on influenza circulation during the COVID-19 pandemic in nine tropical Asian countries[J]. Influenza Other Respir Viruses, 2022, 16(3): 568-576. DOI: 10.1111/irv.12953.
    [12] Lei H, Zhang N, Niu B, et al. Effect of rapid urbanization in Mainland China on the seasonal influenza epidemic: spatiotemporal analysis of surveillance data from 2010 to 2017[J]. JMIR Public Health Surveill, 2023, 9: e41435. DOI: 10.2196/41435.
    [13] Peng JL, Xu K, Tong Y, et al. Epidemiological characteristics of influenza outbreaks in schools in Jiangsu Province, China, 2020-2023 post-COVID-19 pandemic[J]. BMC Infect Dis, 2024, 24(1): 1189. DOI: 10.1186/s12879-024-10079-8.
    [14] Zhang Y, Wang SJ, Feng ZX, et al. Influenza incidence and air pollution: findings from a four-year surveillance study of prefecture-level cities in China[J]. Front Public Health, 2022, 10: 1071229. DOI: 10.3389/fpubh.2022.1071229.
    [15] Toczylowski K, Wietlicka-Piszcz M, Grabowska M, et al. Cumulative effects of particulate matter pollution and meteorological variables on the risk of influenza-like illness[J]. Viruses, 2021, 13(4): 556. DOI: 10.3390/v13040556.
    [16] Song Y, Zhang Y, Wang TT, et al. Spatio-temporal differentiation in the incidence of influenza and its relationship with air pollution in China from 2004 to 2017[J]. Chin Geogr Sci, 2021, 31(5): 815-828. DOI: 10.1007/s11769-021-1228-2.
    [17] Su W, Wu XG, Geng XY, et al. The short-term effects of air pollutants on influenza-like illness in Jinan, China[J]. BMC Public Health, 2019, 19(1): 1319. DOI: 10.1186/s12889-019-7607-2.
    [18] Lu B, Wang YC, Zhu ZS, et al. Epidemiological and genetic characteristics of influenza virus and the effects of air pollution on laboratory-confirmed influenza cases in Hulunbuir, China, from 2010 to 2019[J]. Epidemiol Infect, 2020, 148: e159. DOI: 10.1017/S0950268820001387.
    [19] Zhang JJ, Mu Q. Air pollution and defensive expenditures: evidence from particulate-filtering facemasks[J]. J Environ Econ Manag, 2018, 92: 517-536. DOI: 10.1016/j.jeem.2017.07.006.
    [20] Feng C, Li J, Sun WJ, et al. Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing, China[J]. Environ Health, 2016, 15: 17. DOI: 10.1186/s12940-016-0115-2.
    [21] Li NX, Friedrich R, Schieberle C. Exposure of individuals in Europe to air pollution and related health effects[J]. Front Public Health, 2022, 10: 871144. DOI: 10.3389/fpubh.2022.871144.
    [22] 胡婷, 彭质斌, 张彦平. 部分国家和地区重点病毒性呼吸道传染病监测情况概述[J]. 中华流行病学杂志, 2024, 45(2): 300-304. DOI: 10.3760/cma.j.cn112338-20230630-00408.

    Hu T, Peng ZB, Zhang YP. Summary of key viral respiratory infectious diseases surveillance in some countries and regions in the world[J]. Chin J Epidemiol, 2024, 45(2): 300-304. DOI: 10.3760/cma.j.cn112338-20230630-00408.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-03
  • 修回日期:  2025-04-09
  • 刊出日期:  2025-05-10

目录

    /

    返回文章
    返回