• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DeepMeta:多中心泛癌转录组学数据的恶性肿瘤复发转移风险分层新模型

詹奇 胡正雨 潘绍锦 伍亚舟 李芳

詹奇, 胡正雨, 潘绍锦, 伍亚舟, 李芳. DeepMeta:多中心泛癌转录组学数据的恶性肿瘤复发转移风险分层新模型[J]. 中华疾病控制杂志, 2025, 29(9): 1071-1079. doi: 10.16462/j.cnki.zhjbkz.2025.09.010
引用本文: 詹奇, 胡正雨, 潘绍锦, 伍亚舟, 李芳. DeepMeta:多中心泛癌转录组学数据的恶性肿瘤复发转移风险分层新模型[J]. 中华疾病控制杂志, 2025, 29(9): 1071-1079. doi: 10.16462/j.cnki.zhjbkz.2025.09.010
ZHAN Qi, HU Zhengyu, PAN Shaojin, WU Yazhou, LI Fang. DeepMeta: an innovative framework for stratifying cancer recurrence and metastasis risks using multi-center pan-cancer transcriptomic data[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(9): 1071-1079. doi: 10.16462/j.cnki.zhjbkz.2025.09.010
Citation: ZHAN Qi, HU Zhengyu, PAN Shaojin, WU Yazhou, LI Fang. DeepMeta: an innovative framework for stratifying cancer recurrence and metastasis risks using multi-center pan-cancer transcriptomic data[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(9): 1071-1079. doi: 10.16462/j.cnki.zhjbkz.2025.09.010

DeepMeta:多中心泛癌转录组学数据的恶性肿瘤复发转移风险分层新模型

doi: 10.16462/j.cnki.zhjbkz.2025.09.010
基金项目: 

国家自然科学基金 82173621

详细信息
    通讯作者:

    李芳,E-mail: oucfli@163.com

  • 中图分类号: R730.1;TP391

DeepMeta: an innovative framework for stratifying cancer recurrence and metastasis risks using multi-center pan-cancer transcriptomic data

Funds: 

National Natural Science Foundation of China 82173621

More Information
  • 摘要:   目的  构建恶性肿瘤复发转移风险分层模型,为临床精准诊疗提供决策支持。  方法  基于癌症基因组图谱(The Cancer Genome Atlas, TCGA)和基因表达数据库(Gene Expression Omnibus, GEO)多中心数据构建泛癌队列,开发DeepMeta模型,通过自编码器预训练提取组学特征,结合迁移学习实现跨癌种知识迁移,利用高斯混合模型完成无监督亚型聚类,并基于极端梯度提升构建有监督分类器;采用一致性指数(concordance index, C-index)和对数秩(log rank, Log-rank)检验评估模型效能,结合沙普利加性解释(SHapley additive explanations, SHAP)算法与基因富集分析解析生物学机制。  结果  DeepMeta模型在TCGA的31种恶性肿瘤中,RNA与微小RNA多组学联合分析可区分28种恶性肿瘤风险亚型,RNA单组学分析可区分26种,C-index范围分别为0.58~0.91和0.52~0.91,模型性能优于未预训练模型和传统基线模型;GEO外部验证中,肝细胞癌和乳腺癌的C-index分别为0.85和0.90,且Log-rank检验结果进一步证实DeepMeta模型的风险分层能力。鉴定出76个泛癌关键基因,形成两类功能模块,基因簇Ⅰ调控力学信号转导和机械刺激响应,基因簇Ⅱ主导胞外基质重塑和细胞黏附通路,从生物学角度验证了模型的可靠性。  结论  DeepMeta模型在恶性肿瘤复发转移风险分层中展现良好效能,为恶性肿瘤关键靶向基因的研究提供有力支持。
  • 图  1  TCGA泛癌数据的分布情况

    外环数字:代表总病例数;内环数字:代表复发转移数;UCEC:子宫内膜癌;HNSC:头颈鳞状细胞癌;KIRC:肾透明细胞癌;BLCA:膀胱尿路上皮癌;LUSC:肺鳞癌;LIHC:肝细胞癌;KIRP:肾乳头状细胞癌;CESC:宫颈鳞癌和腺癌;PCPG:嗜铬细胞瘤和副神经瘤;TGCT:睾丸生殖细胞肿瘤;DLBC:弥漫性大B细胞淋巴瘤; TCGA: 癌症基因组图谱。

    Figure  1.  The distribution of pan-cancer data from TCGA

    Outer ring number: represents the total number of cases; Inner ring number: represents the number of recurrences and metastases; UCEC: uterine corpus endometrial carcinoma; HNSC: head and neck squamous cell carcinoma; KIRC: kidney renal clear cell carcinoma; BLCA: bladder urothelial carcinoma; LUSC: lung squamous cell carcinoma; LIHC: liver hepatocellular carcinoma; KIRP: kidney renal papillary cell carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; TGCT: testicular germ cell tumor; DLBC: diffuse large B-cell lymphoma; TCGA: The Cancer Cenome Atlas.

    图  2  技术路线图

    TCGA:癌症基因组图谱;miRNA:微小RNA;GMM:高斯混合模型;XGBoost:极端梯度提升;GO: 基因本体论。

    Figure  2.  Technology roadmap

    TCGA: The Cancer Genome Atlas; miRNA: microRNA; GMM: Gaussian mixture model; XGBoost: extreme gradient boosting; GO: gene ontology.

    图  3  DeepMeta模型框架图

    miRNA:微小RNA;XGBoost:极端梯度提升;GMM:高斯混合模型。

    Figure  3.  DeepMeta framework structure

    miRNA: microRNA; XGBoost: extreme gradient boosting; GMM: Gaussian mixture model.

    图  4  模型风险分层结果

    A:测试集在RNA+miRNA联合分析风险分层结果;B~C:分别为训练集、测试集风险分层结果比较;DLBC:弥漫性大B细胞淋巴瘤;HNSC:头颈鳞状细胞癌;KIRC:肾透明细胞癌;miRNA:微小RNA;C-index:一致性指数。

    Figure  4.  Model risk stratification results

    A: Testing sets demonstrate risk stratification outcomes in integrated RNA-miRNA analysis; B-C: Comparative analysis of risk stratification between training and testing cohorts; DLBC: diffuse large B-cell lymphoma; HNSC: head and neck squamous cell carcinoma; KIRC: kidney renal clear cell carcinoma; miRNA: microRNA; C-index: concordance index.

    图  5  模型效果比较和外部验证

    A: 模型风险分层效果比较;B: DeepMeta外部验证;KIRC: 肾透明细胞癌;C-index:一致性指数;GEO:基因表达数据库。

    Figure  5.  Model effect comparison and external validation

    A: Model performance evaluation in risk stratification; B: External validation of DeepMeta; KIRC: kidney renal clear cell carcinoma; C-index: concordance index; GEO: Gene Expression Omnibus.

    图  6  关键基因分析结果

    A~B:乳腺癌;C:泛癌关键基因的聚类热图;miRNA:微小RNA;SHAP:沙普利加性解释。

    Figure  6.  Key genetic analysis results

    A-B: Critical genes underlying metastatic recurrence in breast cancer; C: Hierarchically clustered heatmap of pan-cancer critical gene signatures; miRNA: microRNA; SHAP: SHapley additive explanations.

    图  7  基因本体论富集分析结果

    A:基因簇Ⅰ的基因本体论富集分析结果;B:基因簇Ⅱ的基因本体论富集分析结果。

    Figure  7.  Gene ontology enrichment analysis results

    A: gene ontology enrichment profiles of gene cluster Ⅰ; B: gene ontology enrichment profiles of gene cluster Ⅱ.

  • [1] International Agency for Research on Cancer. Global cancer burden growing, amidst mounting need for services[EB/OL]. (2024-02-01)[2024-04-10]. https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services.
    [2] Han BF, Zheng RS, Zeng HM, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
    [3] 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.

    Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022[J]. Chin J Oncol, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
    [4] Hu Z, Li Z, Ma ZC, et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases[J]. Nat Genet, 2020, 52(7): 701-708. DOI: 10.1038/s41588-020-0628-z.
    [5] Nguyen B, Fong C, Luthra A, et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25, 000 patients[J]. Cell, 2022, 185(3): 563-575.e11. DOI: 10.1016/j.cell.2022.01.003.
    [6] 林跃玮, 黄永明, 李文乐, 等. 机器学习和传统列线图预测软骨肉瘤肺转移风险的预测模型的建立与评估[J]. 中国骨与关节杂志, 2022, 11(1): 19-26. DOI: 10.3969/j.issn.2095-252X.2022.01.004.

    Lin YW, Huang YM, Li WL, et al. Development and evaluation of predictive models for pulmonary metastasis risk in chondrosarcoma using machine learning and traditional nomograms[J]. Chinese Journal of Bone and Joint, 2022, 11(1): 19-26. DOI: 10.3969/j.issn.2095-252X.2022.01.004.
    [7] Jiang BB, Mu QH, Qiu FF, et al. Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors[J]. Nat Commun, 2021, 12(1): 6692. DOI: 10.1038/s41467-021-27017-w.
    [8] Xu YN, Cui XR, Wang YD. Pan-cancer metastasis prediction based on graph deep learning method[J]. Front Cell Dev Biol, 2021, 9: 675978. DOI: 10.3389/fcell.2021.675978.
    [9] National Cancer Institute, National Human Genome Research Institute. The cancer genome atlas program (TCGA)[EB/OL]. [2024-04-10]. https://tcga-data.nci.nih.gov/tcga/.
    [10] National Center for Biotechnology Information. Gene expression omnibus (GEO)[EB/OL]. [2024-04-10]. https://www.ncbi.nlm.nih.gov/geo/.
    [11] National Cancer Institute. Genomic data commons data portal[EB/OL]. [2024-04-10]. https://portal.gdc.cancer.gov/.
    [12] Umberto M. An introduction to autoencoders[EB/OL]. (2022-01-11)[2025-05-06]. https://doi.org/10.48550/arXiv.2201.03898.
    [13] D'Amico S, Dall'Olio L, Rollo C, et al. MOSAIC: an artificial intelligence-based framework for multimodal analysis, classification, and personalized prognostic assessment in rare cancers[J]. JCO Clin Cancer Inform, 2024, 8: e2400008. DOI: 10.1200/CCI.24.00008.
    [14] Wang MX, Wu YS, Li XJ, et al. IGJ suppresses breast cancer growth and metastasis by inhibiting EMT via the NF-κB signaling pathway[J]. Int J Oncol, 2023, 63(3): 105. DOI: 10.3892/ijo.2023.5553.
    [15] Wen RM, Qiu ZY, Marti GEW, et al. AZGP1 deficiency promotes angiogenesis in prostate cancer[J]. J Transl Med, 2024, 22(1): 383. DOI: 10.1186/s12967-024-05183-x.
    [16] Xu ZP, Chen SQ, Liu RJ, et al. Circular RNA circPOLR2A promotes clear cell renal cell carcinoma progression by facilitating the UBE3C-induced ubiquitination of PEBP1 and, thereby, activating the ERK signaling pathway[J]. Mol Cancer, 2022, 21(1): 146. DOI: 10.1186/s12943-022-01607-8.
    [17] Gong BC, Qu TY, Zhang JJ, et al. Downregulation of ABLIM3 confers to the metastasis of neuroblastoma via regulating the cell adhesion molecules pathway[J]. Comput Struct Biotechnol J, 2024, 23: 1547-1561. DOI: 10.1016/j.csbj.2024.04.024.
    [18] Koning T, Cordova F, Aguilar G, et al. S-Nitrosylation in endothelial cells contributes to tumor cell adhesion and extravasation during breast cancer metastasis[J]. Biol Res, 2023, 56(1): 51. DOI: 10.1186/s40659-023-00461-2.
    [19] Mao L, Chen J, Lu X, et al. Proteomic analysis of lung cancer cells reveals a critical role of BCAT1 in cancer cell metastasis[J]. Theranostics, 2021, 11(19): 9705-9720. DOI: 10.7150/thno.61731.
  • 加载中
图(7)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2025-05-06
  • 网络出版日期:  2025-10-10
  • 刊出日期:  2025-09-10

目录

    /

    返回文章
    返回