Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 23 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
LIU Zi-yan, WU Xiao-li, XIE Mei-qiu, WANG Zhi-peng, LIU Ai-zhong. Application of directed acyclic graphs in identification and control of selection bias in causal inference[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(3): 351-355. doi: 10.16462/j.cnki.zhjbkz.2019.03.022
Citation: LIU Zi-yan, WU Xiao-li, XIE Mei-qiu, WANG Zhi-peng, LIU Ai-zhong. Application of directed acyclic graphs in identification and control of selection bias in causal inference[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(3): 351-355. doi: 10.16462/j.cnki.zhjbkz.2019.03.022

Application of directed acyclic graphs in identification and control of selection bias in causal inference

doi: 10.16462/j.cnki.zhjbkz.2019.03.022
  • Received Date: 2018-10-25
  • Rev Recd Date: 2018-12-27
  • Publish Date: 2019-03-10
  • In the etiology study of epidemiology, selection bias will lead to the fact that the research sample cannot represent the general population, the association between exposure and outcome among those selected for analysis differs from the association among those eligible, and the true causal association cannot be inferred. Directed acyclic graphs (DAGs) could visualize complex causality, introduce the Collider-stratification bias using simple graphics language, provide a simple and intuitive way to identify Selection bias, different types of selection bias are verified by the graphic structure of the Collider-stratification bias. In practical studies, there may be multiple biases at the same time, improper adjustment of the collider will lead to Collider-stratification bias, open a backdoor path, even change the size and direction of the confounding bias. In order to obtain an unbiased estimate of the exposure to the outcome, it is necessary to identify the collider and avoid the adjustment to prevent the occurrence of Collider-stratification bias by using DAGs.
  • loading
  • [1]
    Janszky I, Ahlbom A, Svensson AC. The Janus face of statistical adjustment: confounders versus colliders[J]. Eur J Epidemiol, 2010, 25(6): 361-363. DOI: 10.1007/s10654-010-9462-4.
    [2]
    Pearl J. Causual diagrams for empirical research[J]. Biometrika, 1995, 82(4): 702-710. DOI: 10.2307/233739.
    [3]
    向韧, 戴文杰, 熊元, 等. 有向无环图在因果推断控制混杂因素中的应用[J]. 中华流行病学杂志, 2016, 37(7): 1035-1038. DOI: 10.3760/cma.j.issn.0254-6450.2016.07.025.

    Xiang R, Dai WJ, Xiong Y, et al. Application of directed acyclic graphs in control of confounding[J]. Chin J Epidemiol, 2016, 37(7): 1035-1038. DOI: 10.3760/cma.j.issn.0254-6450.2016.07.025.
    [4]
    Pearl J. An introduction to causal inference[J]. International Journal of Biostatistics, 2010, 6(2): Article 7. DOI: 10.2202/1557-4679.1203.
    [5]
    Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research[J]. Epidemiology, 1999, 10(1): 37. DOI: 10.1097/00001648-199901000-00008.
    [6]
    Liu W, Brookhart MA, Schneeweiss S, et al. Implications of M bias in epidemiologic studies: a simulation study[J]. American Journal of Epidemiology, 2012, 176(10): 938-948. DOI: 10.1093/aje/kws165.
    [7]
    Munafo MR, Tilling K, Taylor AE, et al. Collider scope: when selection bias can substantially influence observed associations[J]. International Journal of Epidemiology, 2017, 47(1): 226-235. DOI: 10.1093/ije/dyx206.
    [8]
    Gage SH, Davey SG, Ware JJ, et al. G=E: What GWAS can tell us about the environment[J]. Plos Genetics, 2016, 12(2): e1005765. DOI: 10.1371/journal.pgen.1005765.
    [9]
    詹思延. 流行病学-第7版[M]. 北京: 人民卫生出版社, 2012: 144-148.

    Zhan SY. Epidemiology-seventh edition[M]. Beijing: People's Medical Publishing House, 2012: 144-148.
    [10]
    Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias[J]. Epidemiology, 2004, 15(5): 615-625. DOI: 10.1097/01.ede.0000135174.63482.43.
    [11]
    Berkson J. Limitations of the application of fourfold table analysis to hospital data[J]. Int J Epidemiol, 2014, 43(2): 511-5. DOI: 10.2307/3002000.
    [12]
    Hernan MA. Invited commentary: selection bias without colliders[J]. Am J Epidemiol, 2017, 185(11): 1048-1050. DOI: 10.1093/aje/kwx077.
    [13]
    Horwitz RI, Feinstein AR. Alternative analytic methods for case-control studies of estrogens and endometrial cancer[J]. N Engl Jo Med, 1978, 299(20): 1089. DOI:10.1056/nejm 197811162992001.
    [14]
    Greenland S, Neutra R. An analysis of detection bias and proposed corrections in the study of estrogens and endometrial cancer[J]. J Chronic Dis, 1981, 34(9-10): 433-438. DOI: 10.1016/0021-9681(81)90002-3.
    [15]
    Clarice R. Weinberg. Toward a clearer definition of confounding[J]. Am J Epidemiol, 1993, 137(1): 1-8. DOI: 10.1093/oxfordjournals.aje.a116591.
    [16]
    Morgenstern JMR. The foundations of confounding in epidemiology[J]. Comput Math Appli, 1987, 14(9): 869-916. DOI: 10.1016/0898-1221(87)90236-7.
    [17]
    Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias[J]. Epidemiology, 2003, 14(3): 300-306. DOI: 10.2307/3703850.
    [18]
    谭红专. 病因流行病学研究方法进展[J]. 中华疾病控制杂志, 2017, 21(8): 755-757. DOI: 10.16462/j.cnki.zhjbkz.2017.08.001.

    Tan HZ. Progress in epidemiological etiology study methods[J]. Chi J Dis Control Prev, 2017, 21(8): 755-757. DOI: 10.16462/j.cnki.zhjbkz.2017.08.001.
    [19]
    Tu YK. Directed acyclic graphs and structural equation modelling[M]. Modern Methods for Epidemiology. Springer Netherlands, 2012: 191-203. DOI: 10.1007/978-94-007-3024-311.
    [20]
    Whitcomb BW, Schisterman EF, Perkins NJ, et al. Quantification of collider-stratification bias and the birthweight paradox[J]. Paediatr Perinat Epidemiol, 2009, 23(5): 394-402. DOI: 10.1111/j.1365-3016.2009.01053.x.
    [21]
    Banack HR, Kaufman JS. The obesity paradox: understanding the effect of obesity on mortality among individuals with cardiovascular disease[J]. Prev Med, 2014, 62(2): 96-102. DOI: 10.1016/j.ypmed.2014.02.003.
    [22]
    Banack HR, Kaufman JS. From bad to worse: collider stratification amplifies confounding bias in the "obesity paradox"[J]. European Journal of Epidemiology, 2015, 30(10): 1111-1114. DOI: 10.1007/s10654-015-0069-7.
    [23]
    Banack HR, Kaufman JS. Does selection bias explain the obesity paradox among individuals with cardiovascular disease?[J]. Ann Epidemiol, 2015, 25(5): 342-349. DOI: 10.1016/j.annepidem.2015.02.008.
    [24]
    VanderWeele TJ, Robins JM. Signed directed acyclic graphs for causal inference[J]. J Royal Stat Soc Series B Stat Methodol, 2010, 72(1): 111-127. DOI: 10.1111/j.1467-9868.2009.00728.x.
    [25]
    Shrier I, Platt RW. Reducing bias through directed acyclic graphs[J]. BMC Med Res Methodol, 2008, 8(1): 70-70. DOI: 10.1186/1471-2288-8-70.
    [26]
    Ananth CV, Schisterman EF. Confounding, causality and confusion: the role of intermediate variables in interpreting observational studies in obstetrics[J]. Am J Obstet Gynecol, 2017: S0002937817305173. DOI: 10.1016/j.ajog.2017.04.016.
    [27]
    Greenland S, Pearl J. Causal diagrams[J]. International encyclopedia of statistical science, 2014, 32(2): 4-32. DOI: 10.1002/9781118445112.stat03732.
    [28]
    Maclehose RF, Kaufman JS. The wizard of Odds[J]. Epidemiology, 2012, 23(1): 10-12. DOI: 10.1097/EDE.0b013e31823b5492.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (797) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return