Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHANG Ding, ZHAO Ya-shuang. Applications of bioinformatics in molecular epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(1): 20-24. doi: 10.16462/j.cnki.zhjbkz.2021.01.005
Citation: ZHANG Ding, ZHAO Ya-shuang. Applications of bioinformatics in molecular epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(1): 20-24. doi: 10.16462/j.cnki.zhjbkz.2021.01.005

Applications of bioinformatics in molecular epidemiology

doi: 10.16462/j.cnki.zhjbkz.2021.01.005
More Information
  • Corresponding author: ZHAO Ya-shuang, E-mail: zhao_yashuang@263.net
  • Received Date: 2020-12-20
  • Rev Recd Date: 2020-12-26
  • Publish Date: 2021-01-10
  • Molecular epidemiology mainly studies the occurrence and development of diseases and their influencing factors based on the molecular level. The primary aspect of molecular epidemiological research is based on identifying biomarkers. Bioinformatics, an instrumental discipline of analyzing biology data, can combines and analyses high-throughput data of genomics, transcriptomics, epigenomics and proteomics. Bioinformatics plays an important role in epidemiological screening and researching biomarkers for disease susceptibility, cause exploration, disease diagnosis and prognosis and others. The purpose of this review was to provide an overview of applications of bioinformatics in molecular epidemiology.
  • loading
  • [1]
    李霞, 雷健波.生物信息学[M].第2版.北京:人民卫生出版社, 2015.

    Li X, Lei JB. Bioinformatics[M]. 2nd ed. Beijing: People's Medical Publishing House, 2015.
    [2]
    詹思延.流行病学[M].第7版.北京:人民卫生出版社, 2012.

    Zhan SY. Epidemiology[M]. 7th ed. Beijing: People's Medical Publishing House, 2012.
    [3]
    王志富.基于候选基因策略的脓毒症遗传易感性研究[D].北京: 北京协和医学院, 2012.

    Wang ZF. Study on genetic susceptibility to sepsis based on candidate gene strategy[D]. Beijing: Peking Union Medical College, 2012.
    [4]
    Hogeweg P. The roots of bioinformatics in theoretical biology[J]. PLoS Comput Biol, 2011, 7(3):e1002021. DOI: 10.1371/journal.pcbi.1002021.
    [5]
    Sayers EW, Cavanaugh M, Clark K, et al. GenBank[J]. Nucleic Acids Res, 2020, 48(D1):D84-D86. DOI: 10.1093/nar/gkz956.
    [6]
    UniProt Consortium. UniProt: the universal protein knowledgebase in 2021[J]. Nucleic Acids Res, 2020:gkaa1100. DOI: 10.1093/nar/gkaa1100.
    [7]
    方积乾.卫生统计学[M].第7版 北京:人民卫生出版社, 2012.

    Fang JQ. Health statistics[M]. 7th ed. Beijing: People's Medical Publishing House, 2012.
    [8]
    Carriço JA, Sabat AJ, Friedrich AW, et al. Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution[J]. Euro Surveill, 2013, 18(4):20382. DOI: 10.2807/ese.18.04.20382-en.
    [9]
    Sabat AJ, Budimir A, Nashev D, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance[J]. Euro Surveill, 2013, 18(4):20380. DOI: 10.2807/ese.18.04.20380-en.
    [10]
    Mellmann A, Harmsen D, Cummings CA, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology[J]. PLoS One, 2011, 6(7):e22751. DOI: 10.1371/journal.pone.0022751.
    [11]
    Askar M, Faber MS, Frank C, et al. Update on the ongoing outbreak of haemolytic uraemic syndrome due to Shiga toxin-producing Escherichia coli (STEC) serotype O104, Germany, May 2011[J]. Euro Surveill, 2011, 16(22):19883. DOI: 10.2807/ese.16.22.19883-en.
    [12]
    Frank C, Werber D, Cramer JP, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany[J]. N Engl J Med, 2011, 365(19):1771-1780. DOI: 10.1056/NEJMoa1106483.
    [13]
    Mellmann A, Bielaszewska M, Köck R, et al. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli[J]. Emerg Infect Dis, 2008, 14(8):1287-1290. DOI: 10.3201/eid1408.071082.
    [14]
    Tang XL, Wu CC, Li X, et al. On the origin and continuing evolution of SARS-CoV-2[J]. Natl Sci Rev, 2020, 7(6):1012-1023. DOI: 10.1093/nsr/nwaa036.
    [15]
    Hoffmann M, Luo Y, Monday SR, et al. Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States[J]. J Infect Dis, 2016, 213(4):502-508. DOI: 10.1093/infdis/jiv297.
    [16]
    Nightingale K, Lin KM, Ravenhill BJ, et al. High-Definition Analysis of Host Protein Stability during Human Cytomegalovirus Infection Reveals Antiviral Factors and Viral Evasion Mechanisms[J]. Cell Host Microbe, 2018, 24(3):447-460. DOI: 10.1016/j.chom.2018.07.011.
    [17]
    Collaborators GBD 2017 DALYs and HALE. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159):1859-1922. DOI: 10.1016/s0140-6736(18)32335-3.
    [18]
    Yamada Y, Kato K, Oguri M, et al. Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease[J]. Int J Mol Med, 2018, 42(5):2415-2436. DOI: 10.3892/ijmm.2018.3852.
    [19]
    Todd JA. Etiology of type 1 diabetes[J]. Immunity, 2010, 32(4):457-467. DOI: 10.1016/j.immuni.2010.04.001.
    [20]
    Chen Z, Wen W, Beeghly-Fadiel A, et al. Identifying putative susceptibility genes and evaluating their associations with somatic mutations in human cancers[J]. Am J Hum Genet, 2019, 105(3):477-492. DOI: 10.1016/j.ajhg.2019.07.006.
    [21]
    Barbeira AN, Dickinson SP, Bonazzola R, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics[J]. Nat Commun, 2018, 9(1):1825. DOI: 10.1038/s41467-018-03621-1.
    [22]
    Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping traits using reference transcriptome data[J]. Nat Genet, 2015, 47(9):1091-1098. DOI: 10.1038/ng.3367.
    [23]
    Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association studies[J]. Nat Genet, 2016, 48(3):245-252. DOI: 10.1038/ng.3506.
    [24]
    Zhu Z, Zhang F, Hu H, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets[J]. Nat Genet, 2016, 48(5):481-487. DOI: 10.1038/ng.3538.
    [25]
    Wu L, Shi W, Long J, et al. A transcriptome-wide association study of 229, 000 women identifies new candidate susceptibility genes for breast cancer[J]. Nat Genet, 2018, 50(7):968-978. DOI: 10.1038/s41588-018-0132-x.
    [26]
    Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients[J]. Nat Rev Cancer, 2011, 11(6):426-437. DOI: 10.1038/nrc3066.
    [27]
    Zeng C, Stroup EK, Zhang Z, et al. Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy[J]. Cancer Commun (Lond), 2019, 39(1):12. DOI: 10.1186/s40880-019-0356-x.
    [28]
    Luo H, Zhao Q, Wei W, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer[J]. Sci Transl Med, 2020, 12(524):eaax7533. DOI: 10.1126/scitranslmed.aax7533.
    [29]
    Hakimi AA, Reznik E, Lee CH, et al. An integrated metabolic atlas of clear cell renal cell carcinoma[J]. Cancer Cell, 2016, 29(1):104-116. DOI: 10.1016/j.ccell.2015.12.004.
    [30]
    Yu P, Lan H, Song X, et al. High expression of the SH3TC2-DT/SH3TC2 gene pair associated with FLT3 mutation and poor survival in acute myeloid leukemia: an integrated TCGA analysis[J]. Front Oncol, 2020, 10:829. DOI: 10.3389/fonc.2020.00829.
    [31]
    Wang P, Wu M, Tu Z, et al. Identification of RNA: 5-methylcytosine methyltransferases-related signature for predicting prognosis in glioma[J]. Front Oncol, 2020, 10:1119. DOI: 10.3389/fonc.2020.01119.
    [32]
    Zhu L, Wang H, Jiang C, et al. Clinically applicable 53-Gene prognostic assay predicts chemotherapy benefit in gastric cancer: a multicenter study[J]. EBioMedicine, 2020, 61:103023. DOI: 10.1016/j.ebiom.2020.103023.
    [33]
    Pich O, Muiños F, Lolkema MP, et al. The mutational footprints of cancer therapies[J]. Nat Genet, 2019, 51(12):1732-1740. DOI: 10.1038/s41588-019-0525-5.
    [34]
    Crotti S, Enzo MV, Bedin C, et al. Clinical predictive circulating peptides in rectal cancer patients treated with neoadjuvant chemoradiotherapy[J]. J Cell Physiol, 2015, 230(8):1822-1828. DOI: 10.1002/jcp.24894.
    [35]
    Li CX, Wheelock CE, Sköld CM, et al. Integration of multi-omics datasets enables molecular classification of COPD[J]. Eur Respir J, 2018, 51(5):1701930. DOI: 10.1183/13993003.01930-2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2306) PDF downloads(471) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return