Citation: | ZHANG Ding, ZHAO Ya-shuang. Applications of bioinformatics in molecular epidemiology[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(1): 20-24. doi: 10.16462/j.cnki.zhjbkz.2021.01.005 |
[1] |
李霞, 雷健波.生物信息学[M].第2版.北京:人民卫生出版社, 2015.
Li X, Lei JB. Bioinformatics[M]. 2nd ed. Beijing: People's Medical Publishing House, 2015.
|
[2] |
詹思延.流行病学[M].第7版.北京:人民卫生出版社, 2012.
Zhan SY. Epidemiology[M]. 7th ed. Beijing: People's Medical Publishing House, 2012.
|
[3] |
王志富.基于候选基因策略的脓毒症遗传易感性研究[D].北京: 北京协和医学院, 2012.
Wang ZF. Study on genetic susceptibility to sepsis based on candidate gene strategy[D]. Beijing: Peking Union Medical College, 2012.
|
[4] |
Hogeweg P. The roots of bioinformatics in theoretical biology[J]. PLoS Comput Biol, 2011, 7(3):e1002021. DOI: 10.1371/journal.pcbi.1002021.
|
[5] |
Sayers EW, Cavanaugh M, Clark K, et al. GenBank[J]. Nucleic Acids Res, 2020, 48(D1):D84-D86. DOI: 10.1093/nar/gkz956.
|
[6] |
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021[J]. Nucleic Acids Res, 2020:gkaa1100. DOI: 10.1093/nar/gkaa1100.
|
[7] |
方积乾.卫生统计学[M].第7版 北京:人民卫生出版社, 2012.
Fang JQ. Health statistics[M]. 7th ed. Beijing: People's Medical Publishing House, 2012.
|
[8] |
Carriço JA, Sabat AJ, Friedrich AW, et al. Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution[J]. Euro Surveill, 2013, 18(4):20382. DOI: 10.2807/ese.18.04.20382-en.
|
[9] |
Sabat AJ, Budimir A, Nashev D, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance[J]. Euro Surveill, 2013, 18(4):20380. DOI: 10.2807/ese.18.04.20380-en.
|
[10] |
Mellmann A, Harmsen D, Cummings CA, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology[J]. PLoS One, 2011, 6(7):e22751. DOI: 10.1371/journal.pone.0022751.
|
[11] |
Askar M, Faber MS, Frank C, et al. Update on the ongoing outbreak of haemolytic uraemic syndrome due to Shiga toxin-producing Escherichia coli (STEC) serotype O104, Germany, May 2011[J]. Euro Surveill, 2011, 16(22):19883. DOI: 10.2807/ese.16.22.19883-en.
|
[12] |
Frank C, Werber D, Cramer JP, et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany[J]. N Engl J Med, 2011, 365(19):1771-1780. DOI: 10.1056/NEJMoa1106483.
|
[13] |
Mellmann A, Bielaszewska M, Köck R, et al. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli[J]. Emerg Infect Dis, 2008, 14(8):1287-1290. DOI: 10.3201/eid1408.071082.
|
[14] |
Tang XL, Wu CC, Li X, et al. On the origin and continuing evolution of SARS-CoV-2[J]. Natl Sci Rev, 2020, 7(6):1012-1023. DOI: 10.1093/nsr/nwaa036.
|
[15] |
Hoffmann M, Luo Y, Monday SR, et al. Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States[J]. J Infect Dis, 2016, 213(4):502-508. DOI: 10.1093/infdis/jiv297.
|
[16] |
Nightingale K, Lin KM, Ravenhill BJ, et al. High-Definition Analysis of Host Protein Stability during Human Cytomegalovirus Infection Reveals Antiviral Factors and Viral Evasion Mechanisms[J]. Cell Host Microbe, 2018, 24(3):447-460. DOI: 10.1016/j.chom.2018.07.011.
|
[17] |
Collaborators GBD 2017 DALYs and HALE. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159):1859-1922. DOI: 10.1016/s0140-6736(18)32335-3.
|
[18] |
Yamada Y, Kato K, Oguri M, et al. Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease[J]. Int J Mol Med, 2018, 42(5):2415-2436. DOI: 10.3892/ijmm.2018.3852.
|
[19] |
Todd JA. Etiology of type 1 diabetes[J]. Immunity, 2010, 32(4):457-467. DOI: 10.1016/j.immuni.2010.04.001.
|
[20] |
Chen Z, Wen W, Beeghly-Fadiel A, et al. Identifying putative susceptibility genes and evaluating their associations with somatic mutations in human cancers[J]. Am J Hum Genet, 2019, 105(3):477-492. DOI: 10.1016/j.ajhg.2019.07.006.
|
[21] |
Barbeira AN, Dickinson SP, Bonazzola R, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics[J]. Nat Commun, 2018, 9(1):1825. DOI: 10.1038/s41467-018-03621-1.
|
[22] |
Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping traits using reference transcriptome data[J]. Nat Genet, 2015, 47(9):1091-1098. DOI: 10.1038/ng.3367.
|
[23] |
Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association studies[J]. Nat Genet, 2016, 48(3):245-252. DOI: 10.1038/ng.3506.
|
[24] |
Zhu Z, Zhang F, Hu H, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets[J]. Nat Genet, 2016, 48(5):481-487. DOI: 10.1038/ng.3538.
|
[25] |
Wu L, Shi W, Long J, et al. A transcriptome-wide association study of 229, 000 women identifies new candidate susceptibility genes for breast cancer[J]. Nat Genet, 2018, 50(7):968-978. DOI: 10.1038/s41588-018-0132-x.
|
[26] |
Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients[J]. Nat Rev Cancer, 2011, 11(6):426-437. DOI: 10.1038/nrc3066.
|
[27] |
Zeng C, Stroup EK, Zhang Z, et al. Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy[J]. Cancer Commun (Lond), 2019, 39(1):12. DOI: 10.1186/s40880-019-0356-x.
|
[28] |
Luo H, Zhao Q, Wei W, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer[J]. Sci Transl Med, 2020, 12(524):eaax7533. DOI: 10.1126/scitranslmed.aax7533.
|
[29] |
Hakimi AA, Reznik E, Lee CH, et al. An integrated metabolic atlas of clear cell renal cell carcinoma[J]. Cancer Cell, 2016, 29(1):104-116. DOI: 10.1016/j.ccell.2015.12.004.
|
[30] |
Yu P, Lan H, Song X, et al. High expression of the SH3TC2-DT/SH3TC2 gene pair associated with FLT3 mutation and poor survival in acute myeloid leukemia: an integrated TCGA analysis[J]. Front Oncol, 2020, 10:829. DOI: 10.3389/fonc.2020.00829.
|
[31] |
Wang P, Wu M, Tu Z, et al. Identification of RNA: 5-methylcytosine methyltransferases-related signature for predicting prognosis in glioma[J]. Front Oncol, 2020, 10:1119. DOI: 10.3389/fonc.2020.01119.
|
[32] |
Zhu L, Wang H, Jiang C, et al. Clinically applicable 53-Gene prognostic assay predicts chemotherapy benefit in gastric cancer: a multicenter study[J]. EBioMedicine, 2020, 61:103023. DOI: 10.1016/j.ebiom.2020.103023.
|
[33] |
Pich O, Muiños F, Lolkema MP, et al. The mutational footprints of cancer therapies[J]. Nat Genet, 2019, 51(12):1732-1740. DOI: 10.1038/s41588-019-0525-5.
|
[34] |
Crotti S, Enzo MV, Bedin C, et al. Clinical predictive circulating peptides in rectal cancer patients treated with neoadjuvant chemoradiotherapy[J]. J Cell Physiol, 2015, 230(8):1822-1828. DOI: 10.1002/jcp.24894.
|
[35] |
Li CX, Wheelock CE, Sköld CM, et al. Integration of multi-omics datasets enables molecular classification of COPD[J]. Eur Respir J, 2018, 51(5):1701930. DOI: 10.1183/13993003.01930-2017.
|