Citation: | CAO Shu, LENG Jun-hong, LI Wei-qin, FANG Zhong-ze, YANG Xi-lin, HUO Xiao-xu. Correlation analysis on trimethylamine N-oxide and its metabolites in early pregnancy with overweight[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(2): 171-175. doi: 10.16462/j.cnki.zhjbkz.2021.02.010 |
[1] |
刘红宏, 胡晓敏, 田然, 等.肠道菌群及其代谢产物与动脉粥样硬化的研究进展[J].中国循环杂志, 2017, 32(12):1237-1239. DOI: 10.3969/j.issn.1000-3614.2017.12.025.
Liu HH, Hu XM, Tian R, et al. Research progress of intestinal flora and its metabolites and atherosclerosis[J]. Chin Circul J, 2017, 32(12):1237-1239. DOI: 10.3969/j.issn.1000-3614.2017.12.025
|
[2] |
Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics[J]. Circ Cardiovasc Genet, 2015, 8(1):187-191. DOI: 10.1161/CIRCGENETICS.114.000219.
|
[3] |
Janeiro MH, Ramírez MJ, Milagro FI, et al. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target[J]. Nutrients, 2018, 10(10):1398. DOI: 10.3390/nu10101398.
|
[4] |
Tang WH, Hazen SL. Microbiome, trimethylamine N-oxide, and cardiometabolic disease[J]. Transl Res, 2017, 179:108-115. DOI: 10.1016/j.trsl.2016.07.007.
|
[5] |
Huo X, Li J, Cao YF, et al. Trimethylamine N-oxide metabolites in early pregnancy and risk of gestational diabetes: a nested case-control study[J]. J Clin Endocrinol Metab, 2019, 104(11):5529-5539. DOI: 10.1210/jc.2019-00710.
|
[6] |
Canyelles M, Tondo M, Cedó L, et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function[J]. Int J Mol Sci, 2018, 19(10):3228. DOI: 10.3390/ijms19103228.
|
[7] |
Dehghan P, Farhangi MA, Nikniaz L, et al. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response meta-analysis[J]. Obes Rev, 2020, 21(5):e12993. DOI: 10.1111/obr.12993.
|
[8] |
Schugar RC, Shih DM, Warrier M, et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue[J]. Cell Rep, 2017, 19(12):2451-2461. DOI: 10.1016/j.celrep.2017.05.077.
|
[9] |
DiNicolantonio JJ, McCarty M, OKeefe J. Association of moderately elevated Tmethylamine-N-Oxide with cardiovascular risk: is TMAO serving as a marker for hepatic insulin resistance[J]. Open Heart, 2019, 6(1):e000890. DOI: 10.1136/openhrt-2018-000890.
|
[10] |
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341):57-63. DOI: 10.1038/nature09922.
|
[11] |
Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4), 217-225. DOI: 10.1016/j.cmet.2005.09.001.
|
[12] |
Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation[J]. Cell Metab, 2013, 17(1): 49-60. DOI: 10.1016/j.cmet.2012.12.011.
|
[13] |
Zeisel SH, Warrier M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease[J]. Annu Rev Nutr, 2017, 37:157-181. DOI: 10.1146/annurev-nutr-071816-064732.
|
[14] |
Chávez-Talavera O, Tailleux A, Lefebvre P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7):1679-1694.e3. DOI: 10.1053/j.gastro.2017.01.055.
|
[15] |
马少欣, 侯珊珊, 傅继华.肝脏糖脂代谢的胰岛素信号通路研究进展[J].药学研究, 2016, 35(2):94-96. DOI: 10.13506/j.cnki.jpr.2016.02.011.
Ma SX, Hou SS, Fu JH. Research progress of the signaling pathway in sugar and lipid metabolism in hepatocyte[J]. Pharm Res, 2016, 35(2):94-96. DOI: 10.13506/j.cnki.jpr.2016.02.011.
|
[16] |
Heianza Y, Sun D, Li X, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial[J]. Gut, 2019, 68(2):263-270. DOI: 10.1136/gutjnl-2018-316155.
|
[17] |
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy[J]. Scientifica (Cairo), 2012, 2012:857516. DOI: 10.6064/2012/857516.
|
[18] |
Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus[J]. J Clin Invest, 1999, 104(6):787-794. DOI: 10.1172/JCI7231.
|
[19] |
Cnop M, Vidal J, Hull RL, et al. Progressive loss of β-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes[J]. Diabetes Care, 2007, 30(3):677-682. DOI: 10.2337/dc06-1834.
|