Citation: | LI Xue-li, LIU Zhao, YU Bo-Wen, YANG Hong. Research progress of immune-inflammatory response mechanisms in ischemic stroke[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(3): 352-358. doi: 10.16462/j.cnki.zhjbkz.2021.03.019 |
[1] |
Malone K, Amu S, Moore AC, et al. The immune system and stroke: from current targets to future therapy[J]. Immunol Cell Biol, 2019, 97(1): 5-16. DOI: 10.1111/imcb.12191.
|
[2] |
Shi K, Tian DC, Li ZG, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11): 1058-1066. DOI: 10.1016/S1474-4422(19)30078-X.
|
[3] |
Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory disequilibrium in stroke[J]. Circ Res, 2016, 119(1): 142-158. DOI: 10.1161/CIRCRESAHA.116.308022.
|
[4] |
Lambertsen KL, Meldgaard M, Ladeby R, et al. A quantitative study of microglial- macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice[J]. J Cereb Blood Flow Metab, 2005, 25(1): 119-135. DOI: 10.1038/sj.jcbfm.9600014.
|
[5] |
Gelderblom M, Leypoldt F, Steinbach K, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke[J]. Stroke, 2009, 40(5): 1849-1857. DOI: 10.1161/STROKEAHA.108.534503.
|
[6] |
Garaschuk O, Verkhratsky A. Physiology of microglia[J]. Methods Mol Biol, 2019, 2034: 27-40. DOI: 10.1007/978-1-4939-9658-2_3.
|
[7] |
Jickling GC, Liu D, Ander BP, et al. Targeting neutrophils in ischemic stroke: translational insights from experimental studies[J]. J Cereb Blood Flow Metab, 2015, 35(6): 888-901. DOI: 10.1038/jcbfm.2015.45.
|
[8] |
Allen C, Thornton P, Denes A, et al. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA[J]. J Immunol, 2012, 189(1): 381-392. DOI: 10.4049/jimmunol.1200409.
|
[9] |
Hayward NJ, Elliott PJ, Sawyer SD, et al. Lack of evidence for neutrophil participation during infarct formation following focal cerebral ischemia in the rat[J]. Exp Neurol, 1996, 139(2): 188-202. DOI: 10.1006/exnr.1996.0093.
|
[10] |
Breckwoldt MO, Chen JW, Stangenberg L, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase[J]. Proc Natl Acad Sci, 2008, 105(47): 18584-18589. DOI: 10.1073/pnas.0803945105.
|
[11] |
Kaito M, Araya S, Gondo Y, et al. Relevance of distinct monocyte subsets to clinical course of ischemic stroke patients[J]. PLoS One, 2013, 8(8): e69409. DOI: 10.1371/journal.pone.0069409.
|
[12] |
Gliem M, Mausberg AK, Lee JI, et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models[J]. Ann Neurol, 2012, 71(6): 743-752. DOI: 10.1002/ana.23529.
|
[13] |
Chu HX, Broughton BR, Kim HA, et al. Evidence that Ly6C(hi) monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization[J]. Stroke, 2015, 46(7): 1929-1937. DOI: 10.1161/STROKEAHA.115.009426.
|
[14] |
Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice[J]. J Neuroinflammation, 2011, 8(1): 174. DOI: 10.1186/1742-2094-8-174.
|
[15] |
Liesz A, Zhou W, Mracskó é, et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke[J]. Brain, 2011, 134(Pt3): 704-720. DOI: 10.1093/brain/awr008.
|
[16] |
Ortolano F, Maffia P, Dever G, et al. Advances in imaging of new targets for pharmacological intervention in stroke: real-time tracking of T-cells in the ischaemic brain[J]. Br J Pharmacol, 2010, 159(4): 808-811. DOI: 10.1111/j.1476-5381.2009.00527.x.
|
[17] |
Xie LK, Li WJ, Hersh J, et al. Experimental ischemic stroke induces long-term T cell activation in the brain[J]. J Cereb Blood Flow Metab, 2019, 39(11): 2268-2276. DOI: 10.1177/0271678X18792372.
|
[18] |
Zierath D, Schulze J, Kunze A, et al. The immunologic profile of adoptively transferred lymphocytes influences stroke outcome of recipients[J]. J Neuroimmunol, 2013, 263(1-2): 28-34. DOI: 10.1016/j.jneuroim.2013.07.014.
|
[19] |
Luo Y, Zhou YQ, Xiao W et al. Interleukin-33 ameliorates ischemic brain injury in experimental stroke through promoting Th2 response and suppressing Th17 response[J]. Brain Res, 2015, 1597: 86-94. DOI: 10.1016/j.brainres.2014.12.005.
|
[20] |
Grilli M, Barbieri I, Basudev H, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage[J]. Eur J Neurosci, 2000, 12(7): 2265-2272. DOI: 10.1046/j.1460-9568.2000.00090.x.
|
[21] |
Filiano AJ, Gadani SP, Kipnis J. How and why do T cells and their derived cytokines affect the injured and healthy brain?[J] Nat Rev Neurosci, 2017, 18(6): 375-384. DOI: 10.1038/nrn.2017.39.
|
[22] |
Liesz A, Suri-Payer E, Veltkamp C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke[J]. Nat Med, 2009, 15(2): 192-199. DOI: 10.1038/nm.1927.
|
[23] |
Li PY, Mao LL, Zhou GQ, et al. Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia[J]. Stroke, 2013, 44(12): 3509-3515. DOI: 10.1161/STROKEAHA.113.002637.
|
[24] |
Zhao YX, Zhu TR, Li H, et al. Transplantation of lymphocytes co-cultured with human cord blood-derived multipotent stem cells attenuates inflammasome activity in ischemic stroke[J]. Clin Interv Aging, 2019, 14: 2261-2271. DOI: 10.2147/CIA.S223595.
|
[25] |
Li PY, Gan Y, Sun BL, et al. Adoptive regulatory Tcell therapy protects against cerebral ischemia[J]. Ann Neurol, 2013, 74(3): 458-471. DOI: 10.1002/ana.23815.
|
[26] |
Liesz A, Kleinschnitz C. Regulatory T Cells in Post-stroke Immune Homeostasis[J]. Transl Stroke Res, 2016, 7(4): 313-321. DOI: 10.1007/s12975-016-0465-7.
|
[27] |
Kleinschnitz C, Kraft P, Dreykluft A, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature[J]. Blood, 2013, 121(4): 679-691. DOI: 10.1182/blood-2012-04-426734.
|
[28] |
Mao LL, Li PY, Zhu W et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke[J]. Brain, 2017, 140(7): 1914-1931. DOI: 10.1093/brain/awx111.
|
[29] |
Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury[J]. Nat Med, 2009, 15(8): 946-950. DOI: 10.1038/nm.1999.
|
[30] |
Gelderblom M, Weymar A, Bernreuther C, et al. Neutralization of the IL-17 axis diminishes neutrophil Invasion and protects from ischemic stroke[J]. Blood, 2012, 120(18): 3793-3802. DOI: 10.1182/blood-2012-02-412726.
|
[31] |
Gelderblom M, Arunachalam P, Magnus T. γδ T cells as early sensors of tissue damage and mediators of secondary neurodegeneration[J]. Front Cell Neurosci, 2014, 8: 368. DOI: 10.3389/fncel.2014.00368.
|
[32] |
Mracsko E, Liesz A, Stojanovic A, et al. Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke[J]. J Neurosci, 2014, 34(50): 16784-16795. DOI: 10.1523/JNEUROSCI.1867-14.2014.
|
[33] |
Fan LZ, Zhang CJ, Zhu LW, et al. FasL-PDPK1 pathway promotes the cytotoxicity of CD8+ T cells during ischemic stroke[J]. Transl Stroke Res, 2020, 11(4): 747-761. DOI: 10.1007/s12975-019-00749-0.
|
[34] |
Schwab JM, Nguyen TD, Meyermann R, et al. Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD8+ T-lymphocytes and activated microglia/macrophages[J]. J Neuroimmunol, 2001, 114(1-2): 232-241. DOI: 10.1016/s0165-5728(00)00433-1.
|
[35] |
Zhou YX, Wang X, Tang D, et al. IL-2mAb reduces demyelination after focal cerebral ischemia by suppressing CD8+ T cells[J]. CNS Neurosci Ther, 2019, 25(4): 532-543. DOI: 10.1111/cns.13084.
|
[36] |
Selvaraj UM, Poinsatte K, Torres V, et al. Heterogeneity of B Cell Functions in Stroke-Related Risk, Prevention, Injury, and Repair[J]. Neurotherapeutics, 2016, 13(4): 729-747. DOI: 10.1007/s13311-016-0460-4.
|
[37] |
Doyle KP, Quach LN, Solé M, et al. B-lymphocyte-mediated delayed cognitive impairment following stroke[J]. J Neurosci, 2015, 35(5): 2133-2145. DOI: 10.1523/JNEUROSCI.4098-14.2015.
|
[38] |
Yilmaz G, Arumugam TV, Stokes KY, et al. Role of T lymphocytes and interferon-gamma in ischemic stroke[J]. Circulation, 2006, 113(17): 2105-2112. DOI: 10.1161/CIRCULATIONAHA.105.593046.
|
[39] |
Offner H, Hurn PD. A novel hypothesis: regulatory B lymphocytes shape outcome from experimental stroke[J]. Transl Stroke Res, 2012, 3(3): 324-330. DOI: 10.1007/s12975-012-0187-4.
|
[40] |
Yamashiro K, Tanaka R, Urabe T, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke[J]. PLOS One, 2017, 12(2): e0171521. DOI: 10.1371/journal.pone.0171521.
|
[41] |
Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells[J]. Nat Med, 2016, 22(5): 516-523. DOI: 10.1038/nm.4068.
|
[42] |
Singh V, Roth S, Llovera G, et al. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke[J]. J Neurosci, 2016, 36(28): 7428-7240. DOI: 10.1523/JNEUROSCI.1114-16.2016.
|
[43] |
Hug A, Dalpke A, Wieczorek N, et al. Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection[J]. Stroke, 2009, 40(10): 3226-3232. DOI: 10.1161/STROKEAHA.109.557967.
|
[44] |
Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke[J]. J Neuroinflammation, 2014, 11: 213. DOI: 10.1186/s12974-014-0213-4.
|
[45] |
Dorrance AM, Fink G. Effects of stroke on the autonomic nervous system[J]. Compr Psychol, 2015, 5(3): 1241-1263. DOI: 10.1002/cphy.c140016.
|
[46] |
Radak D, Resanovic I, Isenovic ER. Changes in hypothalamus-pituitaryadrenal axis following transient ischemic attack[J]. Angiology, 2014, 65(8): 723-732. DOI: 10.1177/0003319713503487.
|
[47] |
Wang H, Deng QW, Peng AN, et al. β-arrestin2 functions as a key regulator in the sympathetic-triggered immunodepression after stroke[J]. Journal of neuroinflammation, 2018, 15(1): 102. DOI: 10.1186/s12974-018-1142-4.
|
[48] |
Zuo L, Shi LH, Yan FL. The reciprocal interaction of sympathetic nervous system and cAMP-PKA-NF-κB pathway in immune suppression after experimental stroke[J]. Neurosci Lett, 2016, 627: 205-210. DOI: 10.1016/j.neulet.2016.05.066.
|
[49] |
Walter U, Kolbaske S, Patejdl R, et al. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression[J]. Eur J Neurol, 2013, 20(1): 153-159. DOI: 10.1111/j.1468-1331.2012.03818.x.
|
[50] |
Cai PY, Bodhit A, Derequito R, et al. Vagus nerve stimulation in ischemic stroke: old wine in a new bottle[J]. Front Neurol, 2014, 5: 107. DOI: 10.3389/fneur.2014.00107.
|
[51] |
Mracsko E, Liesz A, Karcher S, et al. Differential effects of sympathetic nervous system and hypothalamic- pituitary-adrenal axis on systemic immune cells after severe experimental stroke[J]. Brain Behav Immun, 2014, 41: 200-209. DOI: 10.1016/j.bbi.2014.05.015.
|
[52] |
Liu Q, Jin WN, Liu YO, et al. Brain ischemia suppresses immunity in the periphery and brain via different neurogenic innervations[J]. Immunity, 2017, 46(3): 474-487. DOI: 10.1016/j.immuni.2017.02.015.
|
[53] |
Shi K, Wood K, Shi FD. Stroke-induced immunosuppression and poststroke infection[J]. Stroke and vascular neurology, 2018, 3(1): 34-41. DOI: 10.1136/svn-2017-000123.
|
[54] |
Dasgupta M, Brymer C. Prognosis of delirium in hospitalized elderly: worse than we thought[J]. Int J Geriatr Psychiatry, 2014, 29(5): 497-505. DOI: 10.1002/gps.4032.
|
[55] |
Pendlebury ST, Rothwell PM. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular Study[J]. Lancet Neurol, 2019, 18(3): 248-258. DOI: 10.1016/S1474-4422(18)30442-3.
|