Citation: | CHENG Ning, DING Chang-song, GAO Wan-qing, LIU Jia-jun. Analysis of COVID-19 outbreak based on Window-Time-LSTM Model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(5): 577-582. doi: 10.16462/j.cnki.zhjbkz.2021.05.015 |
[1] |
World Health Organization. Coronavirus Disease (COVID-19)[EB/OL]. (2020-11-20)[2020-11-20]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
|
[2] |
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application[J]. Ann Intern Med, 2020, 172(9): 577-582. DOI: 10.7326/M20-0504.
|
[3] |
Sohrabi C, Alsafi Z, O'Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)[J]. Int J Surg, 2020, 76: 71-76. DOI: 10.1016/j.ijsu.2020.02.034.
|
[4] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506. DOI: 10.1016/S0140-6736(20)30183-5.
|
[5] |
Ying S, Li F, Geng X, et al. Spread and control of COVID-19 in China and their associations with population movement, public health emergency measures, and medical resources[J]. medRxiv, 2020, 2020.02.24.20027623. DOI: 10.1101/2020.02.24.20027623.
|
[6] |
Li MY, Muldowney JS. Global stability for the SEIR model in epidemiology[J]. Math Biosci, 1995, 125(2): 155-164. DOI: 10.1016/0025-5564(95)92756-5.
|
[7] |
梅文娟, 刘震, 朱静怡, 等. 新冠肺炎疫情极限IR实时预测模型[J]. 电子科技大学学报, 2020, 49(3): 362-368. DOI: 10.12178/1001-0548.2020063.
Mei WJ, Liu Z, Zhu JY, et al. Extreme IR model for COVID-19 real-time forecasting[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 362-368. DOI: 10.12178/1001-0548.2020063.
|
[8] |
Chintalapudi N, Battineni G, Amenta F. COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: A data driven model approach[J]. J Microbiol Immunol Infect, 2020, 53(3): 396-403. DOI: 10.1016/j.jmii.2020.04.004.
|
[9] |
Yin R, Zhang Y, Zhou X, et al. Time series computational prediction of vaccines for influenza A H3N2 with recurrent neural networks[J]. J Bioinform Comput Biol, 2020, 18(1): 2040002. DOI: 10.1142/S0219720020400028.
|
[10] |
王淑平, 杜敏, 罗建伟, 等. GM(1, 1)模型与LSTM神经网络在肺结核发病数预测中的应用[J]. 公共卫生与预防医学, 2019, 30(5): 11-14. doi: 10.3969/j.issn.1006-2483.2019.05.003
Wang SP, Du M, Luo JW, et al. Application of GM(1, 1) model and LSTM neural network in predicting the incidence of pulmonary tuberculosis[J]. J of Pub Health and Prev Med, 2019, 30(5): 11-14. DOI: 10.3969/j.issn.1006-2483.2019.05.003.
|
[11] |
高秋菊, 周宇畅, 赵树青, 等. ARIMA乘积季节模型和LSTM深度神经网络对石家庄市手足口病疫情预测效果的比较[J]. 中华疾病控制杂志, 2020, 24(1): 73-78. DOI: 10.16462/j.cnki.zhjbkz.2020.01.015.
Gao QJ, Zhou YC, Zhao SQ, et al. Comparison on predictive capacity of ARIMA model and LSTM model for incidence of hand, foot and mouth disease in Shijiazhuang[J]. Chin J Dis Control Prev, 2020, 24(1): 73-78. DOI: 10.16462/j.cnki.zhjbkz.2020.01.015.
|
[12] |
Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. J Thorac Dis, 2020, 12(3): 165-174. DOI: 10.21037/jtd.2020.02.64.
|
[13] |
Tomar A, Gupta N. Prediction for the spread of COVID-19 in India and effectiveness of preventive measures[J]. Sci Total Environ, 2020, 728: 138762. DOI: 10.1016/j.scitotenv.2020.138762.
|
[14] |
Chimmula VKR, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks[J]. Chaos Solitons Fractals, 2020, 135: 109864. DOI: 10.1016/j.chaos.2020.109864.
|
[15] |
Chatterjee A, Gerdes MW, Martinez SG. Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death[J]. Sensors (Basel), 2020, 20(11): 3089. DOI: 10.3390/s20113089.
|