Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 6
Jul.  2021
Turn off MathJax
Article Contents
QIU Qin-xiao, YOU Dong-fang, ZHAO Yang. G-methods in the existence of time varying confounding[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 625-631. doi: 10.16462/j.cnki.zhjbkz.2021.06.002
Citation: QIU Qin-xiao, YOU Dong-fang, ZHAO Yang. G-methods in the existence of time varying confounding[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 625-631. doi: 10.16462/j.cnki.zhjbkz.2021.06.002

G-methods in the existence of time varying confounding

doi: 10.16462/j.cnki.zhjbkz.2021.06.002
Funds:

National Key Research and Development Program of China 2016YFC1000207

National Natural Science Foundation of China 81872709

Key Project of University Natural Scientific Research of Jiangsu Province 18KJA110004

More Information
  • Corresponding author: ZHAO Yang, E-mail: yzhao@njmu.edu.cn
  • Received Date: 2021-04-28
  • Rev Recd Date: 2021-05-28
  • Publish Date: 2021-06-10
  •   Objective  To introduce and compare different G-methods which can deal with time varying confounding.  Methods  The simulation experiments of four scenarios were carried out to verify the effects of different G-methods on time varying confounding in different situations. Dataset from UK Biobank was then analyzed using different G-methods.  Results  All three G methods can effectively deal with time varying confounding with similar performance, while G-computation was vulnerable to G-null paradox. However, with the increasing number of time varying confounders, the estimated effects of inverse probability of treatment weighting (IPTW) were more variable.  Conclusion  All of the three G-methods can remove the bias resulted from time varying confounding appropriately.
  • loading
  • [1]
    Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology[J]. Epidemiology, 2000, 11(5): 550-560. DOI: 10.1097/00001648-200009000-00011.
    [2]
    Fewell Z, Hernán MA, Wolfe F, et al. Controlling for time-dependent confounding using marginal structural models[J]. Stata Journal, 2004, 4(4): 402-420. DOI: 10.1177/1536867X0400400403.
    [3]
    Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies[J]. Epidemiology, 2009, 20(4): 488-495. DOI: 10.1097/EDE.0b013e3181a819a1.
    [4]
    Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias[J]. Epidemiology, 2003, 14(3): 300-306. DOI: 10.1088/0256-307X/25/1/054.
    [5]
    Mansournia MA, Etminan M, Danaei G, et al. Handling time varying confounding in observational research[J]. BMJ, 2017, 359: j4587. DOI: 10.1136/bmj.j4587.
    [6]
    Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men[J]. Epidemiology, 2000, 11(5): 561-570. DOI: 10.1097/00001648-200009000-00012.
    [7]
    Daniel RM, Cousens SN, De Stavola BL, et al. Methods for dealing with time-dependent confounding[J]. Stat Med, 2013, 32(9): 1584-1618. DOI: 10.1002/sim.5686.
    [8]
    Robins JM. A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect[J]. Mathematical Modelling, 1986, 7(9-12): 1393-1512. DOI: 10.1016/0270-0255(86)90088-6.
    [9]
    Robins JM, Blevins D, Ritter G, et al. G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of AIDS patients[J]. Epidemiology, 1992, 3(4): 319-336. DOI: 10.1097/00001648-199207000-00007.
    [10]
    Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments[J]. Stat Med, 2014, 33(7). DOI: 10.1002/sim.5984.
    [11]
    Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights[J]. Comput Methods Programs Biomed, 2004, 75(1): 45-49. DOI: 10.1016/j.cmpb.2003.10.004.
    [12]
    Hernan MA, Robins JM. Estimating causal effects from epidemiological data[J]. J Epidemio Community Health, 2006, 60(7): 578-586. DOI: 10.1136/jech.2004.029496.
    [13]
    Whitcomb BW, Schisterman EF, Perkins NJ, et al. Quantification of collider-stratification bias and the birthweight paradox[J]. Paediatr Perinat Epidemiol, 2009, 23(5): 394-402. DOI: 10.1111/j.1365-3016.2009.01053.x.
    [14]
    Hernán M, Robins J. Causal inference: what if[M]. Boca Raton: Chapman & Hall/CRC, 2020.
    [15]
    National Institutes of Health. Clinical guidelines on the identification, evaluation and treatment of overweight and obesity in adults-the evidence report[J]. Obes Res, 1998, 6(6): 464. http://ci.nii.ac.jp/naid/10018714807
    [16]
    Obesity S. Obesity: preventing and managing the global epidemic. Report of a WHO consultation[J]. World Health Organ Tech Rep Ser, 2000, 894(1): 18-30. DOI: 10.1002/jps.3080150106.
    [17]
    Xu S, Ross C, Raebel MA, et al. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals[J]. Value Health, 2010, 13(2): 273-277. DOI: 10.1111/j.1524-4733.2009.00671.x.
    [18]
    Funk MJ, Westreich D, Wiesen C, et al. Doubly robust estimation of causal effects[J]. Am J Epidemiol, 2011, 173(7): 761-767. DOI: 10.1093/aje/kwq439.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (649) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return