Citation: | QIU Qin-xiao, YOU Dong-fang, ZHAO Yang. G-methods in the existence of time varying confounding[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 625-631. doi: 10.16462/j.cnki.zhjbkz.2021.06.002 |
[1] |
Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology[J]. Epidemiology, 2000, 11(5): 550-560. DOI: 10.1097/00001648-200009000-00011.
|
[2] |
Fewell Z, Hernán MA, Wolfe F, et al. Controlling for time-dependent confounding using marginal structural models[J]. Stata Journal, 2004, 4(4): 402-420. DOI: 10.1177/1536867X0400400403.
|
[3] |
Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies[J]. Epidemiology, 2009, 20(4): 488-495. DOI: 10.1097/EDE.0b013e3181a819a1.
|
[4] |
Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias[J]. Epidemiology, 2003, 14(3): 300-306. DOI: 10.1088/0256-307X/25/1/054.
|
[5] |
Mansournia MA, Etminan M, Danaei G, et al. Handling time varying confounding in observational research[J]. BMJ, 2017, 359: j4587. DOI: 10.1136/bmj.j4587.
|
[6] |
Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men[J]. Epidemiology, 2000, 11(5): 561-570. DOI: 10.1097/00001648-200009000-00012.
|
[7] |
Daniel RM, Cousens SN, De Stavola BL, et al. Methods for dealing with time-dependent confounding[J]. Stat Med, 2013, 32(9): 1584-1618. DOI: 10.1002/sim.5686.
|
[8] |
Robins JM. A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect[J]. Mathematical Modelling, 1986, 7(9-12): 1393-1512. DOI: 10.1016/0270-0255(86)90088-6.
|
[9] |
Robins JM, Blevins D, Ritter G, et al. G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of AIDS patients[J]. Epidemiology, 1992, 3(4): 319-336. DOI: 10.1097/00001648-199207000-00007.
|
[10] |
Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments[J]. Stat Med, 2014, 33(7). DOI: 10.1002/sim.5984.
|
[11] |
Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights[J]. Comput Methods Programs Biomed, 2004, 75(1): 45-49. DOI: 10.1016/j.cmpb.2003.10.004.
|
[12] |
Hernan MA, Robins JM. Estimating causal effects from epidemiological data[J]. J Epidemio Community Health, 2006, 60(7): 578-586. DOI: 10.1136/jech.2004.029496.
|
[13] |
Whitcomb BW, Schisterman EF, Perkins NJ, et al. Quantification of collider-stratification bias and the birthweight paradox[J]. Paediatr Perinat Epidemiol, 2009, 23(5): 394-402. DOI: 10.1111/j.1365-3016.2009.01053.x.
|
[14] |
Hernán M, Robins J. Causal inference: what if[M]. Boca Raton: Chapman & Hall/CRC, 2020.
|
[15] |
National Institutes of Health. Clinical guidelines on the identification, evaluation and treatment of overweight and obesity in adults-the evidence report[J]. Obes Res, 1998, 6(6): 464. http://ci.nii.ac.jp/naid/10018714807
|
[16] |
Obesity S. Obesity: preventing and managing the global epidemic. Report of a WHO consultation[J]. World Health Organ Tech Rep Ser, 2000, 894(1): 18-30. DOI: 10.1002/jps.3080150106.
|
[17] |
Xu S, Ross C, Raebel MA, et al. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals[J]. Value Health, 2010, 13(2): 273-277. DOI: 10.1111/j.1524-4733.2009.00671.x.
|
[18] |
Funk MJ, Westreich D, Wiesen C, et al. Doubly robust estimation of causal effects[J]. Am J Epidemiol, 2011, 173(7): 761-767. DOI: 10.1093/aje/kwq439.
|