Citation: | SU Ping, WANG Ting-ting, YU Yuan-yuan, SUN Xiao-ru, LI Hong-kai, XUE Fu-zhong. The effect of mis-adjusting instrumental variables on the estimation of causal effect in Logistic regression analysis model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(6): 656-662. doi: 10.16462/j.cnki.zhjbkz.2021.06.007 |
[1] |
Splawa-Neyman J, Dabrowska DM, Speed TP. On the application of probability theory to agricultural experiments. Essay on principles. Section 9[J]. Statist Sci, 1990, 5(4): 465-472. DOI: 10.1214/ss/1177012031.
|
[2] |
Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies[J]. J Educ Psychol, 1974, 66(5): 688-701. DOI: 10.1307/h0037350.
|
[3] |
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1): 41-55. DOI: 10.1093/biomet/70.1.41.
|
[4] |
耿直. 观察性研究与混杂因素[J]. 统计与信息论坛, 2004, (5): 13-17. DOI: 10.3969/j.issn.1007-3116.2004.05.003.
Geng Z. Observational studies and confounding factors[J]. Statistics & Information Forum, 2004, (5): 13-17. DOI: 10.3969/j.issn.1007-3116.2004.05.003.
|
[5] |
D'Agostino RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group[J]. Stat Med, 1998, 17(19): 2265-2281. DOI:10.1002/(sici)1097-0258(19981015)17:19<2265:aid-sim918>3.0.co;2-b.
|
[6] |
VanderWeele TJ, Shpitser I. A new criterion for confounder selection[J]. Biometrics, 2011, 67(4): 1406-1413. DOI: 10.1111/j.1541-0420.2011.01619.x.
|
[7] |
Rubin DB. Should observational studies be designed to allow lack of balance in covariate distributions across treatment groups?[J]. Stat Med, 2010, 28(9): 1420-1423. DOI: 10.1002/sim.3565.
|
[8] |
Hirano K, Imbens GW. Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization[J]. Heal Serv Outcomes Res Methodol, 2001, 2(3-4): 259-278. DOI: 10.1023/a:1020371312283.
|
[9] |
Hitchcock C, Pearl J. Causality: models, reasoning and inference[J]. Philosophical Review, 2001, 110(4): 639. DOI: 10.2307/3182612.
|
[10] |
Weinberg CR. Toward a clearer definition confounding[J]. Am J Epidemiol, 1993, 137(1): 1-8. DOI:1093/oxfordjourala.aje.a116591.
|
[11] |
Bhattacharya J, Vogt WB. Do instrumental variables belong in propensity scores?[J]. Int J Stat Econ, 2012, 9(A12): 107-127. http://www.ams.org/mathscinet-getitem?mr=2967752
|
[12] |
Crown WH. Propensity-score matching in economic analyses: comparison with regression models, instrumental variables, residual inclusion, differences-in-differences, and decomposition methods[J]. Appl Health Econ Health Policy, 2014, 12(1): 7-18. DOI: 10.1007/s40258-013-0075-4.
|
[13] |
James H, Salvador NL, et al. Using matching, instrumental variables, and control functions to estimate economic choice models[J]. Rev Econ Stat, 2004, 86(1): 30-57. DOI: 10.1162/003465304323023660.
|
[14] |
Patrick AR, Schneeweiss S, Brookhart MA, et al. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration[J]. Pharmacoepidemiol Drug Saf, 2011, 20(6): 551-559. DOI: 10.1002/pds.2098.
|
[15] |
Myers JA, Rassen JA, Gagne JJ, et al. Effects of adjusting for instrumental variables on bias and precision of effect estimates[J]. Am J Epidemiol, 2011, 174(11): 1213-1222. DOI: 10.1093/aje/kwr364.
|
[16] |
Walker AM. Matching on provider is risky[J]. J Clin Epidemiol, 2013, 66(8): S65-S68. DOI: 10.1016/j.jclinepi.2013.02.012.
|
[17] |
Brooks JM, Ohsfeldt RL. Squeezing the balloon: propensity scores and unmeasured covariate balance[J]. Health Serv Res, 2013, 48(4): 1487-1507. DOI: 10.1111/1475-6773.12020.
|
[18] |
Ali MS, Groenwold RH, Klungel OH. Propensity score methods and unobserved covariate imbalance: comments on "squeezing the balloon"[J]. Health Serv Res, 2014, 49(3): 1074-1082. DOI: 10.1111/1475-6773.12152.
|
[19] |
Pearl J. On a class of bias-amplifying variables that endanger effect estimates[J]. Computer ence, 2012: 417-424 http://www.oalib.com/paper/4031166
|
[20] |
冯国双, 陈景武, 周春莲. Logistic回归应用中容易忽视的几个问题[J]. 中华流行病学杂志, 2004, 25(6): 544-545. DOI: 10.3760/j.issn:0254-6450.2004.06.022.
Feng GS, Chen JW, Zhou CL. Several problems easy to be ignored in the application of logistic regression[J]. Chin J Epidemiol, 2004, 25(6): 544-545. DOI: 10.3760/j.issn:0254-6450.2004.06.022.
|
[21] |
刘启军, 曾庆, 周燕荣. 精确Logistic回归及其SAS应用程序[J]. 中华流行病学杂志, 2003, 24(8): 725-728. DOI: 10.3760/j.issn:0254-6450.2003.08.022.
Liu QJ, Zeng Q, Zhou YR. Accurate logistic regression and its SAS application[J]. Chin J Epidemiol, 2003, 24(8): 725-728. DOI: 10.3760/j.issn:0254-6450.2003.08.022.
|
[22] |
刘娅飞, 邢娉, 徐秀琴, 等. 山东多中心健康管理纵向观察队列[J]. 山东大学学报(医学版), 2017(6): 30-36. DOI: 10.6040/j.issn.1671-7554.0.2017.376.
Liu YF, Xing P, Xu XQ, et al. Multi-center health management cohort of Shandong Province[J]. Journal of Shandong University (Medical Sciences), 2017(6): 30-36. DOI: 10.6040/j.issn.1671-7554.0.2017.376.
|
[23] |
中国高血压防治指南修订委员会. 中国高血压防治指南2010[J]. 中华心血管病杂志, 2011, 39(7): 579-616. doi: 10.3760/cma.j.issn.0253-3758.2011.07.002
Chinese Committee for the Revision of Hypertension Guidelines. 2010 Chinese guidelines for the management of hypertension[J]. Chin J Cardiol, 2011, 39(7): 579-616. doi: 10.3760/cma.j.issn.0253-3758.2011.07.002
|
[24] |
Loos R, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity[J]. Nat Genet, 2008, 40(6): 768. DOI: 10.1038/ng.140.
|
[25] |
Chen B, Li Z, Chen J, et al. Association of fat mass and obesity-associated and retinitis pigmentosa guanosine triphosphatase (GTPase) regulator-interacting protein-1 like polymorphisms with body mass index in Chinese women[J]. Endocr J, 2018, 65(7). DOI: 10.1507/endocrj.ej17-0554.
|
[26] |
Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors[J]. Stat Methods Med Res, 2012, 21(3): 223-242. DOI: 10.1177/0962280210394459.
|
[27] |
Palmer TM, Nordestgaard BG, Benn M, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: Mendelian randomisation analysis of two large cohorts[J]. BMJ, 2013, 347: f4262. DOI: 10.1136/bmj.f4262.
|
[28] |
Timpson NJ, Harbord R, Davey Smith G, et al. Does greater adiposity increase blood pressure and hypertension risk?: Mendelian randomization using the FTO/MC4R genotype[J]. Hypertension, 2009, 54(1): 84-90. DOI: 10.1161/hypertensionaha.109.130005.
|
[29] |
Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference[J]. Stat Methods Med Res, 2007, 16(4): 309-330. DOI: 10.1177/0962280206077743.
|
[30] |
Ding P, Vanderweele TJ, Robins JM. Instrumental variables as bias amplifiers with general outcome and confounding[J]. Biometrika, 2017, 104(2): 291-302. DOI: 10.1093/biomet/asx009.
|