Citation: | ZHANG Xiao-bao, YAN Dan-ying, CHEN Can, JIANG Dai-xi, DING Cheng, LAN Lei, WU Jie, YANG Shi-gui. Research progress on the basic and effective reproductive number in the epidemiology of infectious diseases[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(7): 753-757, 790. doi: 10.16462/j.cnki.zhjbkz.2021.07.003 |
[1] |
Heffernan JM, Smith RJ, Wahl LM. Perspectives on the basic reproductive ratio[J]. J R Soc Interface, 2005, 2(4): 281-293. DOI: 10.1098/rsif.2005.0042.
|
[2] |
Guerra FM, Bolotin S, Lim G, et al. The basic reproduction number (R0) of measles: a systematic review[J]. Lancet Infect Dis, 2017, 17(12): e420-e428. DOI: 10.1016/s1473-3099(17)30307-9.
|
[3] |
Dietz K. The estimation of the basic reproduction number for infectious diseases[J]. Stat Methods Med Res, 1993, 2(1): 23-41. DOI: 10.1177/096228029300200103.
|
[4] |
Delamater PL, Street E J, Leslie TF, et al. Complexity of the basic reproduction Number (R0)[J]. Emerg Infect Dis, 2019, 25(1): 1-4. DOI: 10.3201/eid2501.171901.
|
[5] |
周涛. 新型冠状病毒肺炎基本再生数的初步预测[J]. 中国循证医学杂志, 2020, 20(3): 359-364. DOI: 10.7507/1672-2531.202001118.
Zhou T. Preliminary prediction of basic reproduction number of COVID-19[J]. Chin J Evid-Based Med, 2020, 20(3): 359-364. DOI: 10.7507/1672-2531.202001118.
|
[6] |
Choi S, Ki M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea[J]. Epidemiol Health, 2020, 42: e2020011. DOI: 10.4178/epih.e2020011.
|
[7] |
Parasite Ecology. Density-dependent vs. Frequency-dependent disease transmission[EB/OL]. (2013-10-17)[2021-03-05]. https://parasiteecology.wordpress.com/2013/10/17/density-dependent-vs-frequency-dependent-disease-transmission/.
|
[8] |
Parasite Ecology. Parasite transmission: density-dependent, frequency-dependent, or neither?[EB/OL]. (2014-02-26)[2021-03-05]. https://parasiteecology.wordpress.com/?s=Parasite+transmission%3A+density-dependent%2C+frequency-dependent%2C+or+neither%3F&submit=Search.
|
[9] |
宋倩倩. 新型冠状病毒肺炎的早期传染病流行病学参数估计研究[J]. 中华流行病学杂志, 2020, 41(4): 461-465. DOI: 10.3760/cma.j.cn112338-20200205-00069.
Song QQ. Epidemiological parameter estimation of COVID-19 in early infectious diseases[J]. Chin J Epidemiol, 2020, 41(4): 461-465. DOI: 10.3760/cma.j.cn112338-20200205-00069.
|
[10] |
Barnhart S, Sheppard L, Beaudet N, et al. Tuberculosis in health care settings and the estimated benefits of engineering controls and respiratory protection[J]. J Occup Environ Med, 1997, 39(9): 849-854. DOI: 10.1097/00043764-199709000-00008.
|
[11] |
Zhou ZF, Mei SJ, Chen J, et al. Nonlinear effect of wind velocity on mumps in Shenzhen, China, 2013-2016[J]. Public Health, 2020, 179: 178-185. DOI: 10.1016/j.puhe.2019.10.023.
|
[12] |
Zhang Q, Zhou M, Yang Y, et al. Short-term effects of extreme meteorological factors on childhood hand, foot, and mouth disease reinfection in Hefei, China: a distributed lag non-linear analysis[J]. Sci Total Environ, 2019, 653: 839-848. DOI: 10.1016/j.scitotenv.2018.10.349.
|
[13] |
Lee BY, Bartsch SM, Ferguson MC, et al. The value of decreasing the duration of the infectious period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection[J]. PLoS Comput Biol, 2021, 17(1): e1008470. DOI: 10.1371/journal.pcbi.1008470.
|
[14] |
Jing QL, Liu MJ, Zhang ZB, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study[J]. Lancet Infect Dis, 2020, 20(10): 1141-1150. DOI: 10.1016/S1473-3099(20)30471-0.
|
[15] |
Edmunds WJ, Kafatos G, Wallinga J, et al. Mixing patterns and the spread of close-contact infectious diseases[J]. Emerg Themes Epidemiol, 2006, 3: 10. DOI: 10.1186/1742-7622-3-10.
|
[16] |
Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases[J]. PLoS Med, 2008, 5(3): e74. DOI: 10.1371/journal.pmed.0050074.
|
[17] |
van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci, 2002, 180: 29-48. DOI: 10.1016/s0025-5564(02)00108-6.
|
[18] |
Xu C, Dong Y, Yu X, et al. Estimation of reproduction numbers of COVID-19 in typical countries and epidemic trends under different prevention and control scenarios[J]. Front Med, 2020, 14(5): 613-622. DOI: 10.1007/s11684-020-0787-4.
|
[19] |
Anderson RM, May RM. Vaccination and herd immunity to infectious diseases[J]. Nature, 1985, 318(6044): 323-329. DOI: 10.1038/318323a0.
|
[20] |
Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics and control of severe acute respiratory syndrome[J]. Science, 2003, 300(5627): 1966-1970. DOI: 10.1126/science.1086616.
|
[21] |
Riley S, Fraser C, Donnelly CA, et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions[J]. Science, 2003, 300(5627): 1961-1966. DOI: 10.1126/science.1086478.
|
[22] |
Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk[J]. Lancet, 2013, 382(9893): 694-699. DOI: 10.1016/s0140-6736(13)61492-0.
|
[23] |
Majumder MS, Rivers C, Lofgren E, et al. Estimation of MERS-Coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: insights from publicly available data[J]. PLoS Curr, 2014, 6. DOI: 10.1371/ecurrents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c.
|
[24] |
Althaus CL. Estimating the reproduction number of ebola virus (EBOV) during the 2014 outbreak in West Africa[J]. PLoS Curr, 2014, 6. DOI: 10.1371/ecurrents.outbreaks.91afb5e0f279e7f29e7056095255b288.
|
[25] |
Biggerstaff M, Cauchemez S, Reed C, et al. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature[J]. BMC Infect Dis, 2014, 14: 480. DOI: 10.1186/1471-2334-14-480.
|
[26] |
Tang S, Xiao Y, Yang Y, et al. Community-based measures for mitigating the 2009 H1N1 pandemic in China[J]. PLoS One, 2010, 5(6): e10911. DOI: 10.1371/journal.pone.0010911.
|
[27] |
Ali ST, Kadi AS, Ferguson NM. Transmission dynamics of the 2009 influenza A (H1N1) pandemic in India: the impact of holiday-related school closure[J]. Epidemics, 2013, 5(4): 157-163. DOI: 10.1016/j.epidem.2013.08.001.
|
[28] |
Netto EM, Moreira-Soto A, Pedroso C, et al. High zika virus seroprevalence in Salvador, Northeastern Brazil limits the potential for further outbreaks[J]. mBio, 2017, 8(6)e01390-17. DOI: 10.1128/mBio.01390-17.
|
[29] |
Funk S, Kucharski AJ, Camacho A, et al. Comparative analysis of dengue and zika outbreaks reveals differences by setting and virus[J]. PLoS Negl Trop Dis, 2016, 10(12): e0005173. DOI: 10.1371/journal.pntd.0005173.
|
[30] |
Nishiura H, Kinoshita R, Mizumoto K, et al. Transmission potential of zika virus infection in the South Pacific[J]. Int J Infect Dis, 2016, 45: 95-97. DOI: 10.1016/j.ijid.2016.02.017.
|
[31] |
Zhao S, Lin QY, Ran JJ, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak[J]. Int J Infect Dis, 2020, 92: 214-217. DOI: 10.1016/j.ijid.2020.01.050.
|
[32] |
Hong K, Yum SJ, Kim JH, et al. Re-estimation of basic reproduction number of COVID-19 based on the epidemic curve by symptom onset date[J]. Epidemiol Infect, 2021, 149: e53. DOI: 10.1017/s0950268821000431.
|
[33] |
Lai CC, Hsu CY, Jen HH, et al. The Bayesian Susceptible-Exposed-Infected-Recovered model for the outbreak of COVID-19 on the Diamond Princess Cruise Ship[J]. Stoch Environ Res Risk Assess, 2021: 1-15. DOI: 10.1007/s00477-020-01968-w.
|