Citation: | XIAO Shuang, ZHANG Jun, HU Jian, HUANG Jia-qi, XIONG Cheng-long, ZHANG Zhi-jie. Spatial risk analysis of global highly pathogenic avian influenza H5N1 virus based on different methods of choosing controls[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(7): 779-784. doi: 10.16462/j.cnki.zhjbkz.2021.07.008 |
[1] |
Chang SC, Cheng YY, Shih SR. Avian influenza virus: the threat of a pandemic[J]. Biomed J, 2006, 29(2): 130.
|
[2] |
Gilbert M, Pfeiffer DU. Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: a review[J]. Spat Spatiotemporal Epidemiol, 2012, 3(3): 173-183. DOI: 10.1016/j.sste.2012.01.002.
|
[3] |
Claes F, Kuznetsov D, Liechti R, et al. The EMPRES-i genetic module: a novel tool linking epidemiological outbreak information and genetic characteristics of influenza viruses[J]. Database(Oxford), 2014, 2014: bau008. DOI: 10.1093/database/bau008.
|
[4] |
Xu M, Cao CX, Li Q, et al. Ecological niche modeling of risk factors for H7N9 human infection in China[J]. Int J of Environ Res Public Health, 2016, 13(6): 600. DOI: 10.3390/ijerph13060600.
|
[5] |
Dai S, Feng DL, Xu B. Monitoring potential geographical distribution of four wild bird species in China[J]. Environ Earth Sci, 2016, 75(9): 1-10. DOI: 10.1007/s12665-016-5289-y.
|
[6] |
Moriguchi S, Onuma M, Goka K. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan[J]. J Vet Med Sci, 2016, 78(7): 1107-1115. DOI: 10.1292/jvms.15-0551.
|
[7] |
Senay SD, Worner SP, Ikeda T. Novel three-step pseudo-absence selection technique for improved species distribution modelling[J]. PLoS One, 2013, 8(8): e71218. DOI: 10.1371/journal.pone.0071218.
|
[8] |
孙利谦, 夏聪聪, 李锐, 等. 基于空间点模式分析全球高致病性禽流感H5N1的空间分布特征[J]. 中华疾病控制杂志, 2016, 20(6): 555-558. DOI: 10.16462/j.cnki.zhjbkz.2016.06.005.
Sun LQ, Xia CC, Li R, et al. Spatial distribution characteristics of global highly pathogenic avian influenza H5N1 based on the spatial point pattern analysis[J]. Chin J Dis Control Prev, 2016, 20(6): 555-558. DOI: 10.16462/j.cnki.zhjbkz.2016.06.005.
|
[9] |
Sun L, Ward MP, Li R, et al. Global spatial risk pattern of highly pathogenic avian influenza H5N1 virus in wild birds : a knowledge-fusion based approach[J]. Prev Vet Med, 2018, 152: 32-39. DOI: 10.1016/j.prevetmed.2018.02.008.
|
[10] |
Barbet-Massin M, Jiguet F, Albert CH, et al. Selecting pseudo-absences for species distribution models: How, where and how many?[J]. Methods Ecol Evol, 2012, 3(2): 327-338. doi: 10.1111/j.2041-210X.2011.00172.x
|
[11] |
Hertzog LR, Besnard A, Jay-Robert P, et al. Field validation shows bias-corrected pseudo-absence selection is the best method for predictive species-distribution modelling[J]. Divers Distrib, 2015, 20(12): 1403-1413. DOI: 10.1111/ddi.12249.
|
[12] |
Dhingra MS, Artois J, Robinson TP, et al. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation[J]. Elife, 2016, 5: e19571. DOI: 10.7554/eLife.19571.
|
[13] |
Elith J, Graham CH, P. Anderson RP, et al. Novel methods improve prediction of species'distributions from occurrence data[J]. Ecography, 2010, 29(2): 129-151. DOI: 10.1111/j.2006.0906-7590.04596.x.
|
[14] |
Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, et al. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia[J]. PNAS, 2005, 102(30): 10682-10687. DOI: 10.1073/pnas.0504662102.
|
[15] |
Martin V, Pfeiffer DU, Zhou X, et al. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China[J]. PLoS Pathog, 2011, 7(3): e1001308. DOI: 10.1371/journal.ppat.1001308.
|
[16] |
NASA Socioeconomic Data and Applications Center (SEDAC). Global One-Eighth Degree Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01[EB/OL]. (2020-12-05)[2020-02-01]. https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-8th-pop-base-year-projection-ssp-2000-2100-rev01/maps.
|
[17] |
Tian L, Liang F, Xu M, et al. Spatio-temporal analysis of the relationship between meteorological factors and hand-foot-mouth disease in Beijing, China[J]. BMC Infect Dis, 2018, 18(1): 158. DOI: 10.1186/s12879-018-3071-3.
|
[18] |
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44(3): 837-845. DOI: 10.2307/2531595.
|
[19] |
Mischler P, Kearney M, McCarroll JC, et al. Environmental and socio-economic risk modelling for Chagas disease in Bolivia[J]. Geospat Health, 2012, 6(3): S59-S66. DOI: 10.4081/gh.2012.123.
|
[20] |
Hengl T, Sierdsema H, Radović A, et al. Spatial prediction of species'distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging[J]. Ecol Model, 2009, 220(24): 3499-3511. DOI: 10.1016/j.ecolmodel.2009.06.038.
|