Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 9
Oct.  2021
Turn off MathJax
Article Contents
WANG Tian-pei, JIN Guang-fu, HU Zhi-bin, SHEN Hong-bing. Advances in applications of polygenic risk score in precision prevention[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(9): 993-997. doi: 10.16462/j.cnki.zhjbkz.2021.09.001
Citation: WANG Tian-pei, JIN Guang-fu, HU Zhi-bin, SHEN Hong-bing. Advances in applications of polygenic risk score in precision prevention[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(9): 993-997. doi: 10.16462/j.cnki.zhjbkz.2021.09.001

Advances in applications of polygenic risk score in precision prevention

doi: 10.16462/j.cnki.zhjbkz.2021.09.001
Funds:

National Natural Science Foundation of China 81872702

More Information
  • Corresponding author: JIN Guang-fu, E-mail: guangfujin@njmu.edu.cn
  • Received Date: 2021-08-10
  • Rev Recd Date: 2021-08-23
  • Available Online: 2021-10-23
  • Publish Date: 2021-09-10
  • Genome-wide association studies have successfully identified numerous genetic loci for complex diseases. Polygenic risk score combining multiple loci together has been proved to effectively measure genetic risk of complex diseases, which poses opportunities for risk stratification and potential precision medicine application. This paper briefly reviews the recent progress in the development and evaluation of polygenic risk score, and summarizes its application in precision prevention.
  • loading
  • [1]
    Buniello A, Macarthur JaL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019[J]. Nucleic Acids Res, 2019, 47(D1): D1005-D1012. DOI: 10.1093/nar/gky1120.
    [2]
    Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies[J]. Nat Rev Genet, 2019, 20(8): 467-484. DOI: 10.1038/s41576-019-0127-1.
    [3]
    Chen ZM, Lee LM, Chen JS, et al. Cohort Profile: the Kadoorie study of chronic disease in China (KSCDC)[J]. Int J Epidemiol, 2005, 34(6): 1243-1249. DOI: 10.1093/ije/dyi174.
    [4]
    Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data[J]. Nature, 2018, 562(7726): 203-209. DOI: 10.1038/s41586-018-0579-z.
    [5]
    Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations[J]. Nat Genet, 2018, 50(9): 1219-1224. DOI: 10.1038/s41588-018-0183-z.
    [6]
    Dai J, Lv J, Zhu M, et al. Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations[J]. Lancet Respir Med, 2019, 7(10): 881-891. DOI: 10.1016/S2213-2600(19)30144-4.
    [7]
    Khera AV, Chaffin M, Wade KH, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood[J]. Cell, 2019, 177(3): 587-596, e589. DOI: 10.1016/j.cell.2019.03.028.
    [8]
    Jin G, Lv J, Yang M, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study[J]. Lancet Oncol, 2020, 21(10): 1378-1386. DOI: 10.1016/S1470-2045(20)30460-5.
    [9]
    Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81(3): 559-575. DOI: 10.1086/519795.
    [10]
    Euesden J, Lewis CM, O'reilly PF. PRSice: polygenic risk score software[J]. Bioinformatics, 2015, 31(9): 1466-1468. DOI: 10.1093/bioinformatics/btu848.
    [11]
    王铖, 戴俊程, 孙义民, 等. 遗传风险评分的原理与方法[J]. 中华流行病学杂志, 2015, 36(10): 1062-1064. DOI: 10.3760/cma.j.issn.0254-6450.2015.10.005.

    Wang C, Dai J, Sun Y, et al. Genetic risk score: principle, methods and application][J]. Chin J Epidemiol, 2015, 36(10): 1062-1064. DOI: 10.3760/cma.j.issn.0254-6450.2015.10.005.
    [12]
    Ma Y, Zhou X. Genetic prediction of complex traits with polygenic scores: a statistical review[J]. Trends Genet, 2021. DOI: 10.1016/j.tig.2021.06.004.
    [13]
    Moser G, Lee SH, Hayes BJ, et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model[J]. PLoS Genet, 2015, 11(4): e1004969. DOI: 10.1371/journal.pgen.1004969.
    [14]
    Zhou X, Carbonetto P, Stephens M. Polygenic modeling with bayesian sparse linear mixed models[J]. PLoS Genet, 2013, 9(2): e1003264. DOI: 10.1371/journal.pgen.1003264.
    [15]
    Vilhjalmsson BJ, Yang J, Finucane HK, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores-sciencedirect[J]. Am J Hum Genet, 2015, 97(4): 576-592. DOI: 10.1016/j.ajhg.2015.09.001.
    [16]
    Hu YM, Lu QS, Powles R, et al. Leveraging functional annotations in genetic risk prediction for human complex diseases[J]. PLoS Comput Biol, 2017, 13(6): e1005589. DOI: 10.1371/journal.pcbi.1005589.
    [17]
    Speed D, Balding DJ. MultiBLUP: improved SNP-based prediction for complex traits[J]. Genome Res, 2014, 24(9): 1550-1557. DOI: 10.1101/gr.169375.113.
    [18]
    Yang S, Zhou X. Accurate and scalable construction of polygenic scores in large biobank data sets[J]. Am J Hum Genet, 2020, 106(5): 679-693. DOI: 10.1016/j.ajhg.2020.03.013.
    [19]
    Mak TSH, Porsch RM, Choi SW, et al. Polygenic scores via penalized regression[J]. Genetic epidemiology, 2017, 41(6): 469-480. DOI: 10.1002/gepi.22050.
    [20]
    Chung W, Chen J, Turman C, et al. Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes[J]. Nat Commun, 2019, 10(1): 569. DOI: 10.1038/s41467-019-08535-0.
    [21]
    Moll M, Sakornsakolpat P, Shrine N, et al. Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts[J]. Lancet Respir Med, 2020, 8(7): 696-708. DOI: 10.1016/S2213-2600(20)30101-6.
    [22]
    Mega JL, Stitziel NO, Smith JG, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials[J]. Lancet, 2015, 385(9984): 2264-2271. DOI: 10.1016/S0140-6736(14)61730-X.
    [23]
    Zhu M, Wang T, Huang Y, et al. Genetic risk for overall cancer and the benefit of adherence to a healthy lifestyle[J]. Cancer Res, 2021. DOI: 10.1158/0008-5472.CAN-21-0836.
    [24]
    Siu AL, Force USPST. Screening for breast cancer: U.S. preventive services task force recommendation statement[J]. Ann Intern Med, 2016, 164(4): 279-296. DOI: 10.7326/M15-2886.
    [25]
    Pashayan N, Morris S, Gilbert FJ, et al. Cost-effectiveness and benefit-to-harm ratio of risk-stratified screening for breast cancer: a life-table model[J]. JAMA Oncol, 2018, 4(11): 1504-1510. DOI: 10.1001/jamaoncol.2018.1901.
    [26]
    Forgetta V, Keller-Baruch J, Forest M, et al. Development of a polygenic risk score to improve screening for fracture risk: a genetic risk prediction study[J]. PLoS Med, 2020, 17(7): e1003152. DOI: 10.1371/journal.pmed.1003152.
    [27]
    Vassos E, Di Forti M, Coleman J, et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis[J]. Biol Psychiatry, 2017, 81(6): 470-477. DOI: 10.1016/j.biopsych.2016.06.028.
    [28]
    Ward J, Graham N, Strawbridge RJ, et al. Polygenic risk scores for major depressive disorder and neuroticism as predictors of antidepressant response: meta-analysis of three treatment cohorts[J]. PloS One, 2018, 13(9): e0203896. DOI: 10.1371/journal.pone.0203896.
    [29]
    International Consortium on Lithium G, Amare AT, Schubert KO, et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: a genome-wide association study[J]. JAMA Psychiatry, 2018, 75(1): 65-74. DOI: 10.1001/jamapsychiatry.2017.3433.
    [30]
    Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report[J]. Am J Psychiatry, 2006, 163(11): 1905-1917. DOI: 10.1176/ajp.2006.163.11.1905.
    [31]
    李倩, 颜财旺, 靳光付. 中国汉族人MHC区域与胃癌易感性的关联分析[J]. 中华疾病控制杂志, 2021, 25(9): 998-1002, 1019. DOI: 10.16462/j.cnki.zhjbkz.2021.09.002

    Li Q, Yan CW, Jin GF. Association between MHC region and gastric cancer susceptibility in Han Chinese[J]. Chin J Dis Control Prev, 2021, 25(9): 998-1002, 1019. DOI: 10.16462/j.cnki.zhjbkz.2021.09.002
    [32]
    胡北平, 汪天培, 朱猛, 等. 血脂水平、遗传风险与男性肿瘤易感性的关联研究[J]. 中华疾病控制杂志, 2021, 25(9): 1003-1007. DOI: 10.16462/j.cnki.zhjbkz.2021.09.003

    Hu BP, Wang TP, Zhu M, et al. Association of blood lipid and genetic with cancer susceptibility in men[J]. Chin J Dis Control Prev, 2021, 25(9): 1003-1007. DOI: 10.16462/j.cnki.zhjbkz.2021.09.003
    [33]
    朱梦怡, 汪天培, 朱猛, 等. C反应蛋白和遗传风险在肿瘤发病中的交互作用研究[J]. 中华疾病控制杂志, 2021, 25(9): 1008-1013. DOI: 10.16462/j.cnki.zhjbkz.2021.09.004

    Zhu MY, Wang TP, Zhu M, et al. The interaction between C-reactive protein and genetic risk in cancer[J]. Chin J Dis Control Prev, 2021, 25(9): 1008-1013. DOI: 10.16462/j.cnki.zhjbkz.2021.09.004
    [34]
    Wand H, Lambert SA, Tamburro C, et al. Improving reporting standards for polygenic scores in risk prediction studies[J]. Nature, 2021, 591(7849): 211-219. DOI: 10.1038/s41586-021-03243-6.
    [35]
    Martin AR, Kanai M, Kamatani Y, et al. Publisher correction: clinical use of current polygenic risk scores may exacerbate health disparities[J]. Nat Genet, 2021, 53(5): 763. DOI: 10.1038/s41588-021-00797-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (705) PDF downloads(268) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return