Citation: | LI Qian, YAN Cai-wang, JIN Guang-fu. Association between MHC region and gastric cancer susceptibility in Han Chinese[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(9): 998-1002,1019. doi: 10.16462/j.cnki.zhjbkz.2021.09.002 |
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
Guan Z, Song B, Liu F, et al. TGF-beta induces HLA-G expression through inhibiting miR-152 in gastric cancer cells[J]. J Biomed Sci, 2015, 22: 107. DOI: 10.1186/s12929-015-0177-4.
|
[3] |
Dutta N, Gupta A, Mazumder DN, et al. Down-regulation of locus-specific human lymphocyte antigen class Ⅰ expression in Epstein-Barr virus-associated gastric cancer: implication for viral-induced immune evasion[J]. Cancer, 2006, 106(8): 1685-1693. DOI: 10.1002/cncr.21784.
|
[4] |
Kelly A, Trowsdale J. Genetics of antigen processing and presentation[J]. Immunogenetics, 2019, 71(3): 161-170. DOI: 10.1007/s00251-018-1082-2.
|
[5] |
Jin G, Lv J, Yang M, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study[J]. Lancet Oncol, 2020, 21(10): 1378-1386. DOI: 10.1016/S1470-2045(20)30460-5.
|
[6] |
Jin G, Ma H, Wu C, et al. Genetic variants at 6p21.1 and 7p15.3 are associated with risk of multiple cancers in Han Chinese[J]. Am J Hum Genet, 2012, 91(5): 928-934. DOI: 10.1016/j.ajhg.2012.09.009.
|
[7] |
Shi Y, Hu Z, Wu C, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1[J]. Nat Genet, 2011, 43(12): 1215-1218. DOI: 10.1038/ng.978.
|
[8] |
Yan C, Zhu M, Ding Y, et al. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations[J]. Gut, 2020, 69(4): 641-651. DOI: 10.1136/gutjnl-2019-318760.
|
[9] |
Gutierrez-Achury J, Zhernakova A, Pulit SL, et al. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease[J]. Nat Genet, 2015, 47(6): 577-578. DOI: 10.1038/ng.3268.
|
[10] |
Hu X, Deutsch AJ, Lenz TL, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk[J]. Nat Genet, 2015, 47(8): 898-905. DOI: 10.1038/ng.3353.
|
[11] |
Sharp SA, Rich SS, Wood AR, et al. Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis[J]. Diabetes Care, 2019, 42(2): 200-207. DOI: 10.2337/dc18-1785.
|
[12] |
Abnet CC, Freedman ND, Hu N, et al. A shared susceptibility locus in PLCE 1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma[J]. Nat Genet, 2010, 42(9): 764-767. DOI: 10.1038/ng.649.
|
[13] |
Zhou F, Cao H, Zuo X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease[J]. Nat Genet, 2016, 48(7): 740-746. DOI: 10.1038/ng.3576.
|
[14] |
Jia X, Han B, Onengut-Gumuscu S, et al. Imputing amino acid polymorphisms in human leukocyte antigens[J]. PLoS One, 2013, 8(6): e64683. DOI: 10.1371/journal.pone.0064683.
|
[15] |
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans[J]. Bioinformatics, 2010, 26(17): 2190-2191. DOI: 10.1093/bioinformatics/btq340.
|
[16] |
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. DOI: 10.1093/nar/gkx247.
|
[17] |
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38(16): e164. DOI: 10.1093/nar/gkq603.
|
[18] |
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels[J]. Bioinformatics, 2015, 31(16): 2745-2747. DOI: 10.1093/bioinformatics/btv195.
|
[19] |
Teng L, He B, Wang J, et al. 4DGenome: a comprehensive database of chromatin interactions[J]. Bioinformatics, 2015, 31(15): 2560-2564. DOI: 10.1093/bioinformatics/btv158.
|
[20] |
Jin F, Li Y, Dixon JR, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells[J]. Nature, 2013, 503(7475): 290-294. DOI: 10.1038/nature12644.
|
[21] |
Gonzalez-Galarza FF, Mccabe A, Santos E, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools[J]. Nucleic Acids Res, 2020, 48(D1): D783-D788. DOI: 10.1093/nar/gkz1029.
|
[22] |
Niens M, Jarrett RF, Hepkema B, et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma[J]. Blood, 2007, 110(9): 3310-3315. DOI: 10.1182/blood-2007-05-086934.
|
[23] |
Salter RD, Norment AM, Chen BP, et al. Polymorphism in the alpha 3 domain of HLA-A molecules affects binding to CD8[J]. Nature, 1989, 338(6213): 345-347. DOI: 10.1038/338345a0.
|
[24] |
Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors[J]. Annu Rev Immunol, 2006, 24: 419-466. DOI: 10.1146/annurev.immunol.23.021704.115658.
|
[25] |
Kwak Y, Koh J, Park Y, et al. Differential prognostic impact of CD8+ T cells based on human leucocyte antigen I and PD-L1 expression in microsatellite-unstable gastric cancer[J]. Br J Cancer, 2020, 122(9): 1399-1408. DOI: 10.1038/s41416-020-0793-y.
|