Citation: | MA Qian-qian, HE Xian-ying, CUI Fang-fang, SUN Dong-xun, ZHAI Yun-kai, GAO Jing-hong, WANG Lin, ZHAO Jie. Prediction of disease burden of esophageal cancer in China based on ARIMA and NNAR models[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(9): 1048-1053. doi: 10.16462/j.cnki.zhjbkz.2021.09.010 |
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
|
[2] |
GBD 2017 Oesophageal Cancer Collaborators. The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Gastroenterol Hepatol, 2020, 5(6): 582-597. DOI: 10.1016/S2468-1253(20)30007-8.
|
[3] |
寻鲁宁, 张帆, 孙纪新, 等. 基于求和自回归滑动平均模型的道路交通伤害死亡趋势预测分析[J]. 中华疾病控制杂志, 2020, 24(4): 467-472. DOI: 10.16462/j.cnki.zhjbkz.2020.04.019.
Xun LN, Zhang F, Sun JX, et al. Prediction and analysis of road traffic injury death trend based on ARIMA model[J]. Chin J Dis Control Prev, 2020, 24(4): 467-472. DOI: 10.16462/j.cnki.zhjbkz.2020.04.019.
|
[4] |
庞艳蕾, 张惠兰, 李向云, 等. 灰色模型GM(1, 1)和ARIMA在拟合全国婴儿、5岁以下儿童死亡率中的应用[J]. 中国卫生统计, 2015, 32(3): 461-463. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201503029.htm
Pang YL, Zhang HL, Li XY, et al. Application of grey model GM(1, 1) and ARIMA in fitting the national mortality rate of infants and children under 5[J]. Chin J Heal Stat, 2015, 32(3): 461-463. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201503029.htm
|
[5] |
Global Health Data Exchange. Global Burden of Disease Study 2019 (GBD 2019) Data Resources[EB/OL]. (2020-10-22)[2020-12-20]. http://ghdx.healthdata.org/gbd-2019.
|
[6] |
Hyndman RJ, Athanasopoulos G. Forecasting: Principles and Practice: 11.3 Neural network models[M/OL]. 2nd ed. OTexts: Melbourne, Australia. https://otexts.com/fpp2/nnetar.html.
|
[7] |
Li ZQ, Wang ZZ, Song H, et al. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population[J]. Infect Drug Resist, 2019, 12: 1011-1020. DOI: 10.2147/IDR.S190418.
|
[8] |
郭兰伟, 石春雷, 黄慧瑶, 等. 中国1996—2015年食管癌经济负担研究的系统综述[J]. 中华流行病学杂志, 2017, 38(1): 102-109. DOI: 10.3760/cma.j.issn.0254-6450.2017.01.020.
Guo LW, Shi CL, Huang HY, et al. Economic burden of esophageal cancer in China from 1996 to 2015: a systematic review[J]. Chin J Epidemiol, 2017, 38(1): 102-109. DOI: 10.3760/cma.j.issn.0254-6450.2017.01.020.
|
[9] |
Yu HK, Kim NY, Kim SS, et al. Forecasting the number of human immunodeficiency virus infections in the Korean population using the autoregressive integrated moving average model[J]. Osong Public Health Res Perspect, 2013, 4(6): 358-362. DOI: 10.1016/j.phrp.2013.10.009.
|
[10] |
He ZR, Tao HB. Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: A nine-year retrospective study[J]. Int J Infect Dis, 2018, 74: 61-70. DOI: 10.1016/j.ijid.2018.07.003.
|
[11] |
Sharafi M, Ghaem H, Tabatabaee HR, et al. Forecasting the number of zoonotic cutaneous leishmaniasis cases in south of Fars province, Iran using seasonal ARIMA time series method[J]. Asian Pac J Trop Med, 2017, 10(1): 79-86. DOI: 10.1016/j.apjtm.2016.12.007.
|
[12] |
张欣, 刘振球, 袁黄波, 等. 神经网络自回归模型在丙肝发病趋势和预测研究中的应用[J]. 中国卫生统计, 2020, 37(4): 524-526. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT202004011.htm
Zhang X, Liu ZQ, Yuan HB, et al. Application of neural network autoregressive model in the study of hepatitis C incidence trend and prediction[J]. Chin J Heal Stat, 2020, 37(4): 524-526. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT202004011.htm
|
[13] |
吴伟, 安淑一, 郭军巧, 等. 非线性自回归神经网络在肾综合征出血热流行趋势预测中的应用[J]. 中华流行病学杂志, 2015, 36(12): 1394-1396. DOI: 10.3760/cma.j.issn.0254-6450.2015.12.017.
Wu W, An SY, Guo JQ, et al. Application of nonlinear autoregressive neural network in predicting incidence tendency of hemorrhagic fever with renal syndrome[J]. Chin J Epidemiol, 2015, 36(12): 1394-1396. DOI: 10.3760/cma.j.issn.0254-6450.2015.12.017.
|
[14] |
李蔚, 吴恺逾, 陈坚红, 等. 基于非线性自回归神经网络和随机森林算法的核电汽轮机组出力优化[J]. 中国电机工程学报, 2021, 41(2): 409-416. DOI: 10.13334/j.0258-8013.pcsee.200761.
Li W, Wu KY, Chen JH, et al. Output Optimization of Nuclear Power Steam Turbine Based on Nonlinear Autoregressive Neural Network and Random Forest Algorithm[J]. Proc Chin Soc Elect Eng, 2021, 41(2): 409-416. DOI: 10.13334/j.0258-8013.pcsee.200761.
|
[15] |
李环, 孙素芬, 罗长寿. 基于NARX神经网络的粮食产量预测模型[J]. 江苏农业科学, 2020, 48(22): 228-232. DOI: 10.15889/j.issn.1002-1302.2020.22.043.
Li H, Sun SF, Luo CS. Forecast model of grain yield based on NARX neural network[J]. Jiangsu Agric Sci, 2020, 48(22): 228-232. DOI: 10.15889/j.issn.1002-1302.2020.22.043.
|