Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 10
Nov.  2021
Turn off MathJax
Article Contents
WU Jun-le, YU Min, ZHOU Mai-geng, ZHOU Chun-liang, XIAO Yi-ze, HUANG Biao, XU Yan-jun, MENG Rui-lin, ZHAO Liang, HU Jian-xiong, HE Guan-hao, XU Xiao-jun, LIU Tao, XIAO Jian-peng, ZENG Wei-lin, GUO Ling-chuan, LI Xing, MA Wen-jun. A study on the thresholds of temperature for early warning in different temperature zones of China based on the temperature-mortality relationships[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(10): 1139-1146. doi: 10.16462/j.cnki.zhjbkz.2021.10.005
Citation: WU Jun-le, YU Min, ZHOU Mai-geng, ZHOU Chun-liang, XIAO Yi-ze, HUANG Biao, XU Yan-jun, MENG Rui-lin, ZHAO Liang, HU Jian-xiong, HE Guan-hao, XU Xiao-jun, LIU Tao, XIAO Jian-peng, ZENG Wei-lin, GUO Ling-chuan, LI Xing, MA Wen-jun. A study on the thresholds of temperature for early warning in different temperature zones of China based on the temperature-mortality relationships[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(10): 1139-1146. doi: 10.16462/j.cnki.zhjbkz.2021.10.005

A study on the thresholds of temperature for early warning in different temperature zones of China based on the temperature-mortality relationships

doi: 10.16462/j.cnki.zhjbkz.2021.10.005
Funds:

The National Key Research and Development Program of China 2018YFA0606200

National Natural Science Foundation of China 42075173

Guangdong Medical Science and Technology Research A2021340

More Information
  • Corresponding author: MA Wen-jun, E-mail: mawj@gdiph.org.cn
  • Received Date: 2021-04-09
  • Rev Recd Date: 2021-07-21
  • Available Online: 2021-11-17
  • Publish Date: 2021-10-10
  •   Objective  To estimate the thresholds of temperature for health early warning in different temperature zones in China, our study aims to provide support for developing health early warning system of temperature.  Methods  Daily mortality and meteorological data were collected from 364 Chinese locations during 2006-2017. Distribution lag non-linear model (DLNM) and multivariate Meta analyses were applied to estimate the association between temperature and mortality, and identified the thresholds of temperature.  Results  Mean of daily temperature was 16.0 ℃. Mean of daily relative humidity was 73.0%. Mean of daily non-accidental mortality was 8.3 cases. The relationships of daily average temperature with mortality in different climate zones were inverted "J" type. For cold effect, the temperature ranges of low risk in the temperate zone, warm temperate or north subtropics, middle subtropics and south subtropics were 9.1-13.8 ℃, 0.1-19.3 ℃, 8.8-24.3 ℃ and 9.9-25.3 ℃, respectively; and they were 1.8-9.1 ℃, -6.1-0.1 ℃, 1.5-8.8 ℃ and 4.8-9.9 ℃ for medium risks of cold temperature, respectively; and they were < 1.8 ℃, < -6.1 ℃, < 1.5 ℃ and < 4.8 ℃ for high risk of cold temperature, respectively. For heat effect, the temperature ranges of low risk were 23.4-24.8 ℃, 28.6-29.3 ℃, 27.2-29.5 ℃ and 28.2-28.6 ℃, respectively; and they were 24.8-26.1 ℃, 29.3-30.1 ℃, 29.5-31.0 ℃ and 28.6-29.0 ℃ for medium risk of hot temperature, respectively; and they were > 26.1 ℃, > 30.1 ℃, > 31.0℃ and > 29.0 ℃ for high risk of hot temperature, respectively. For heat effect in all climate zones, the average daily mortality increased with the increase of risk grade, For cold effect, the average daily mortality increased with the increase of risk grade in other three climate zones, except in warm temperate zone and northern subtropical zone.  Conclusion  Based on the temperature-mortality relationship, we identified the thresholds of temperature for health early warning, and the effectiveness of the early warning based on the thresholds is well.
  • loading
  • [1]
    谢慧妍, 马文军, 张永慧, 等. 广州、长沙、昆明气温对非意外死亡的短期效应研究[J]. 中华预防医学杂志, 2014, 48(1): 38-43. DOI: 10.3760/cma.j.issn.0253-9624.2014.01.009.

    Xie HY, Ma WJ, Zhang YH, et al. Study on the short-term effect of temperature on non-accidental death in Guangzhou, Changsha and Kunming[J]. Chin J Prevent Med, 2014, 48(1): 38-43. DOI: 10.3760/cma.j.issn.0253-9624.2014.01.009.
    [2]
    Song X, Wang S, Hu Y, et al. Impact of ambient temperature on morbidity and mortality: an overview of reviews[J]. Sci Total Environ, 2017, 586: 241-254. DOI: 10.1016/j.scitotenv.2017.01.212.
    [3]
    Chen R, Yin P, Wang L, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities[J]. BMJ, 2018, 363: k4306. DOI: 10.1136/bmj.k4306.
    [4]
    Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study[J]. Lancet, 2015, 386(9991): 369-375. DOI: 10.1016/s0140-6736(14)62114-0.
    [5]
    曾韦霖, 李光春, 肖义泽, 等. 中国四城市温度对居民心脑血管疾病死亡影响的时间序列研究[J]. 中华流行病学杂志, 2012, 33(10): 1021-1025. DOI: 10.3760/cma.j.issn.0254-6450.2012.10.006.

    Zeng WL, Li GC, Xiao YZ, et al. A time series study on the effect of temperature on the death of cardiovascular and cerebrovascular diseases in four cities of China[J]. Chin J Epidemiol, 2012, 33(10): 1021-1025. DOI: 10.3760/cma.j.issn.0254-6450.2012.10.006.
    [6]
    Casanueva A, Burgstall A, Kotlarski S, et al. Overview of existing heat-health warning systems in Europe[J]. Int J Environ Res Public Health, 2019, 16(15): 2657. DOI: 10.3390/ijerph16152657.
    [7]
    Kalkstein LS, Jamason PF, Greene JS, et al. The philadelphia hot weather-health watch/warning system: development and application, summer 1995[J]. Bull Am Meteorol Soc, 1996, 77(7): 1519-1528. DOI: 10.1175/1520-0477(1996)0772.0.co;2.
    [8]
    Nicholls N, Skinner C, Loughnan M, et al. A simple heat alert system for Melbourne, Australia[J]. Int J Biometeorol, 2008, 52(5): 375-384. DOI: 10.1007/s00484-007-0132-5.
    [9]
    Lee KL, Chan YH, Lee TC, et al. The development of the Hong Kong heat index for enhancing the heat stress information service of the Hong Kong observatory[J]. Int J Biometeorol, 2016, 60(7): 1029-1039. DOI: 10.1007/s00484-015-1094-7.
    [10]
    Cheng YT, Shih-Chun CL, Hwang JS. New approach to identifying proper thresholds for a heat warning system using health risk increments[J]. Environ Res, 2019, 170: 282-292. DOI: 10.1016/j.envres.2018.12.059.
    [11]
    Chen YC, Matzarakis A. Modified physiologically equivalent temperature-basics and applications for Western European climate[J]. Theor Appl Climatol, 2018, 132(3): 1275-1289. DOI: 10.1007/s00704-017-2158-x.
    [12]
    陈静, 韩军彩, 张素果, 等. 基于暑热指数的河北省中暑气象等级预报指标研究[J]. 气象与环境学报, 2013, 29(5): 86-91. DOI: 10.3969/j.issn.1673-503x.2013.05.014.

    Chen J, Han JC, Zhang SG, et al. Study on meteorological grade forecast indexes of heatstroke in Hebei Province based on summer heat index[J]. Journal of Meteorology and Environment, 2013, 29(5): 86-91. DOI: 10.3969/j.issn.1673-503x.2013.05.014.
    [13]
    陈辉, 黄卓, 田华, 等. 高温中暑气象等级评定方法[J]. 应用气象学报, 2009, 20(4): 451-457. DOI: 10.11898/1001-7313.20090409.

    Chen H, Huang Z, Tian H, et al. Evaluation method of meteorological grade for high temperature heatstroke[J]. J Appl Meteor Sci, 2009, 20(4): 451-457. DOI: 10.11898/1001-7313.20090409.
    [14]
    Sheridan SC. A survey of public perception and response to heat warnings across four North American cities: an evaluation of municipal effectiveness[J]. Int J Biometeorol, 2007, 52(1): 3-15. DOI: 10.1007/s00484-006-0052-9.
    [15]
    Hutchinson X. Anusplin version 4.4 user guide[M]. Canberra: The Australian National University, 2013: 1-52.
    [16]
    Chen S, Xiao Y, Zhou M, et al. Comparison of life loss per death attributable to ambient temperature among various development regions: a nationwide study in 364 locations in China[J]. Environ Health, 2020, 19(1): 98. DOI: 10.1186/s12940-020-00653-3.
    [17]
    Liu T, Chen X, Xu Y, et al. Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: Evidence from a population-based epidemiological study[J]. Environ Int, 2019, 130: 104882. DOI: 10.1016/j.envint.2019.05.076.
    [18]
    Liu T, Xiao J, Zeng W, et al. A spatiotemporal land-use-regression model to assess individual level long-term exposure to ambient fine particulate matters[J]. MethodsX, 2019, 6: 2101-2105. DOI: 10.1016/j.mex.2019.09.009.
    [19]
    Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32. DOI: 10.1023/A:1010933404324.
    [20]
    郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010, 65(1): 3-12. DOI: 10.11821/xb201001002.

    Zheng JY, Yin YH, Li BY. A new plan for climate regionalization in China[J]. Acta Geographcica Sinica, 2010, 65(1): 3-12. DOI: 10.11821/xb201001002.
    [21]
    Guo Y, Gasparrini A, Armstrong B, et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation[J]. Epidemiology, 2014, 25(6): 781-9. DOI: 10.1097/ede.0000000000000165.
    [22]
    Gasparrini A, Armstrong B. Reducing and meta-analysing estimates from distributed lag non-linear models[J]. BMC Med Res Methodol. 2013(13): 1. DOI: 10.1186/1471-2288-13-1.
    [23]
    Guo Y, Barnett AG, Pan X, et al. The impact of temperature on mortality in Tianjin, China: a case-crossover design with a distributed lag nonlinear model[J]. Environ Health Perspect, 2011, 119(12): 1719-1725. DOI: 10.1289/ehp.1103598.
    [24]
    黄照, 刘涛, 许燕君, 等. 基于死亡数据用DLNM构建气象健康指数[J]. 环境卫生学杂志, 2018, 8(5): 368-373, 380. DOI: 10.13421/j.cnki.hjwsxzz.2018.05.002.

    Huang Z, Liu T, Xu YJ, et al. Using DLNM to construct meteorological health index based on mortality data[J]. Journal of Environmental Hygiene, 2018, 8(5): 368-373, 380. DOI: 10.13421/j.cnki.hjwsxzz.2018.05.002.
    [25]
    Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm[J]. J Stat Softw, 2011, 43(8): 1-20. DOI: 10.18637/jss.v043.i08.
    [26]
    Ma W, Chen R, Kan H. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China[J]. Environ Res, 2014, 134: 127-33. DOI: 10.1016/j.envres.2014.07.007.
    [27]
    Aström DO, Tornevi A, Ebi KL, et al. Evolution of minimum mortality temperature in Stockholm, Sweden, 1901-2009[J]. Environ Health Perspect, 2016, 124(6): 740-744. DOI: 10.1289/ehp.1509692.
    [28]
    Todd N, Valleron AJ. Space-time covariation of mortality with temperature: a systematic study of deaths in France, 1968-2009[J]. Environ Health Perspect, 2015, 123(7): 659-664. DOI: 10.1289/ehp.1307771.
    [29]
    Luo Q, Li S, Guo Y, et al. A systematic review and meta-analysis of the association between daily mean temperature and mortality in China[J]. Environ Res, 2019, 173: 281-299. DOI: 10.1016/j.envres.2019.03.044.
    [30]
    Yin Q, Wang J, Ren Z, et al. Mapping the increased minimum mortality temperatures in the context of global climate change[J]. Nat Commun, 2019, 10(1): 4640. DOI: 10.1038/s41467-019-12663-y.
    [31]
    Krummenauer L, Prahl BF, Costa L, et al. Global drivers of minimum mortality temperatures in cities[J]. Sci Total Environ, 2019, 695: 133560. DOI: 10.1016/j.scitotenv.2019.07.366.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (664) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return