Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 10
Nov.  2021
Turn off MathJax
Article Contents
LIANG Da, SHANG Yue, WANG Zhao-fen, MA Bin-zhong. The relationship between incidence of pulmonary tuberculosis and meteorological factors in Qinghai Province and multivariate time series analysis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(10): 1186-1193. doi: 10.16462/j.cnki.zhjbkz.2021.10.013
Citation: LIANG Da, SHANG Yue, WANG Zhao-fen, MA Bin-zhong. The relationship between incidence of pulmonary tuberculosis and meteorological factors in Qinghai Province and multivariate time series analysis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(10): 1186-1193. doi: 10.16462/j.cnki.zhjbkz.2021.10.013

The relationship between incidence of pulmonary tuberculosis and meteorological factors in Qinghai Province and multivariate time series analysis

doi: 10.16462/j.cnki.zhjbkz.2021.10.013
Funds:

National Natural Science Foundations of China 81860593

Qinghai Provincial Thousand Talents Program for High-level Innovative Talents 2017-2

Appropriate Technology Promotion Project of Health Commission of Qinghai Province 2020-wjtg-02

More Information
  • Corresponding author: MA Bin-zhong, E-mail: qhxnmbz@126.com
  • Received Date: 2021-01-14
  • Rev Recd Date: 2021-03-20
  • Available Online: 2021-11-17
  • Publish Date: 2021-10-10
  •   Objective  To explore the relationship between meteorological factors and the incidence of pulmonary tuberculosis (PTB) in Qinghai Province, and establish a autoregressive integrated moving average model-X (ARIMAX) model to make a short-term prediction of the number of PTB cases.  Methods  Geographically weighted regression (GWR) was applied to analyze the influence of meteorological factors on the incidence of PTB. The monthly number of PTB cases in Qinghai Province from 2014 to 2018 was used as the response sequence and meteorological factors as the input sequence, the meteorological factors related to the incidence of PTB were determined by the cross-correlation function (CCF) diagram. The ARIMAX model was established to fit and predict the monthly number of PTB cases from 2014 to 2018 and 2019 respectively, and compared with the actual monthly cases.  Results  Precipitation and relative humidity had a positive effect on the incidence of PTB, air pressure, temperature and sunshine hours had a negative effect, while the wind speed had both positive and negative effects. The correlation between the average temperature, wind speed and the incidence of PTB was determined by CCF diagram. The optimal model established was ARIMAX(0, 1, 2)×(0, 1, 0)12 with two covariables (the third order lag of average temperature and the second order lag of average wind speed). The model has a goodness of fit (R2) of 0.71 and mean absolute percentage error (MAPE) was 24.91%.  Conclusions  Meteorological factors affected the incidence of PTB to different degrees. An optimal ARIMAX model was established to predict the incidence of PTB.
  • loading
  • [1]
    Greer A, Ng V, Fisman D. Climate change and infectious diseases in North America: the road ahead [J]. CMAJ, 2008, 178(6): 715-722. DOI: 10.1503/cmaj.081325.
    [2]
    李金娟, 裴凌云, 赵翊, 等. 兰州市肺结核病发病与气象因素关系研究[J]. 疾病预防控制通报, 2019, 34(4): 10-13. DOI: 10.13215/j.cnki.jbyfkztb.1905015.

    Li JJ, Pei LY, Zhao Y, et al. Study on relationship between incidence of pulmonary tuberculosis and meteorological factors in Lanzhou [J]. Bull Dis Control Prev, 2019, 34(4): 10-13. DOI: 10.13215/j.cnki.jbyfkztb.1905015.
    [3]
    江伟. 昆山市肺结核流行病学特征及其与气象因素关系分析[D]. 苏州: 苏州大学, 2014. http://cdmd.cnki.com.cn/article/cdmd-10285-1015536834.htm

    Jiang W. Epidemiological characteristics of pulmonary tuberculosis and its relationships with the meteorological factors in Kunshan City [D]. Soochow: Soochow University, 2014. http://cdmd.cnki.com.cn/article/cdmd-10285-1015536834.htm
    [4]
    郑能雄, 林云钦, 郑高, 等. 福州市主要传染病与气象因素关系的研究[J]. 中国公共卫生管理, 2004, 20(4): 343-346. DOI: 10.19568/j.cnki.23-1318.2004.04.034.

    Zheng NX, Lin YQ, Zheng G, et al. Study on the relationship between main infectious diseases and meteorological factors in Fuzhou [J]. Chin J Public Heal Manag, 2004, 20(4): 343-346. DOI: 10.19568/j.cnki.23-1318.2004.04.034.
    [5]
    王朝才, 刘燕, 晁秀珍, 等. 2006-2015年青海省肺结核流行特征分析[J]. 现代预防医学, 2017, 44(3): 397-400. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201703004.htm

    Wang ZC, Liu Y, Chao XZ, et al. Epidemiological characteristics of pulmonary tuberculosis of Qinghai, 2006-2015 [J]. Mod Prev Med, 2017, 44(3): 397-400. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201703004.htm
    [6]
    张松林, 张昆. 全局空间自相关Moran指数和G系数对比研究[J]. 中山大学学报(自然科学版), 2007, 46(4): 93-97. DOI: 10.3321/j.issn:0529-6579.2007.04.021.

    Zhang SL, Zhang K. A comparative study of Moran index and G coefficient of global spatial autocorrelation [J]. Acta Sci Nat Univ Sunyatseni, 2007, 46(4): 93-97. DOI: 10.3321/j.issn:0529-6579.2007.04.021.
    [7]
    时涛, 李士雪. 地理加权回归模型在卫生经济领域的应用举例: 基于ArcGIS 10.4软件介绍[J]. 中国卫生经济, 2018, 37(10): 10-14. DOI: 10.7664/CHE20181002.

    Shi T, Li SX. Application of geographically weighted regression model in the economics of health and health care: based on the introduction of ArcGIS 10.4 [J]. Chin Heal Econ, 2018, 37(10): 10-14. DOI: 10.7664/CHE20181002.
    [8]
    王前, 李涛, 杜昕, 等. 2015-2019年全国肺结核报告发病情况分析[J]. 中国防痨杂志, 2021, 43(2): 107-112. DOI: 10.3969/j.issn.1000-6621.2021.02.002.

    Wang Q, Li T, Du X, et al. The analysis of national tuberculosis reported incidence and mortality, 2015-2019 [J]. Chin J Antituberc, 2021, 43(2): 107-112. DOI: 10.3969/j.issn.1000-6621.2021.02.002.
    [9]
    李世雄, 王玉明, 董继元. 嘉峪关市肺结核病与气象相关影响因素研究[J]. 疾病预防控制通报, 2019, 34(1): 5-9, 41. DOI: 10.13215/j.cnki.jbyfkztb.1811002.

    Li SX, Wang YM, Dong JY. Study on influential factors of meteorology correlated to tuberculosis in Jiayuguan City [J]. Bull Dis Control Prev, 2019, 34(1): 5-9, 41. DOI: 10.13215/j.cnki.jbyfkztb.1811002.
    [10]
    邓斌, 周志刚, 马泽粦, 等. 肺结核病与气象因素关系的BP神经网络模型研究[J]. 国际医药卫生导报, 2008, 14(1): 17-20. DOI: 10.3760/cma.j.issn.1007-1245.2008.01.004.

    Deng B, Zhou ZG, Ma ZL, et al. The model of back-propagation neural network about the relationship between meterological factors and pulmonary tuberculosis [J]. Int Med Heal Guid News, 2008, 14(1): 17-20. DOI: 10.3760/cma.j.issn.1007-1245.2008.01.004.
    [11]
    李林林. 湖南省肺结核发病率及气象因素分析[D]. 济南: 山东大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10422-1013219716.htm

    Li LL. The incidence of tuberculosis and the influence of related meteorological factors in Hunan Province [D]. Jinan: Shandong University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10422-1013219716.htm
    [12]
    李盛, 马汉平, 王金玉, 等. 兰州市气温和风速对肺结核发病的影响研究[J]. 环境卫生学杂志, 2018, 8(2): 91-98. DOI: 10.13421/j.cnki.hjwsxzz.2018.02.003.

    Li S, Ma HP, Wang JY, et al. Effect of air temperature and wind speed on the incidence of tuberculosis in Lanzhou [J]. J Environ Hyg, 2018, 8(2): 91-98. DOI: 10.13421/j.cnki.hjwsxzz.2018.02.003.
    [13]
    龚风云, 王凯, 樊旭成, 等. 乌鲁木齐市流感样病例与气象因素的ARIMAX模型预测分析[J]. 公共卫生与预防医学, 2020, 31(2): 4-8. DOI: 10.3969/j.issn.1006-2483.2020.02.002.

    Gong FY, Wang K, Fan XC, et al. Prediction and analysis of influenza-like illness and meteorological factors by ARIMAX model in Urumqi [J]. J Pub Health and Prev Med, 2020, 31(2): 4-8. DOI: 10.3969/j.issn.1006-2483.2020.02.002.
    [14]
    陈佳, 谢娜, 邓晟, 等. 新疆喀什百日咳与气象因素的多元时间序列分析[J]. 职业与健康, 2018, 34(13): 1834-1839. DOI: 10.13329/j.cnki.zyyjk.2018.0507.

    Chen J, Xie N, Deng S, et al. Multivariate time series analysis of pertussis and meteorological factors in Kashi of Xinjiang [J]. Occup and Health, 2018, 34(13): 1834-1839. DOI: 10.13329/j.cnki.zyyjk.2018.0507.
    [15]
    李虎玲. 新疆喀什地区结核病动力学模型与时间序列模型的建立与分析[D]. 乌鲁木齐: 新疆医科大学, 2019.

    Li HL. Establishment and analysis of tuberculosis dynamics model and time series model in Kashgar, Xinjiang [D]. Urumqi: Xinjiang Medical University, 2019.
    [16]
    妥小青, 张占林, 龚政, 等. 基于ARIMAX模型的乌鲁木齐市流感样病例预测分析[J]. 中华疾病控制杂志, 2018, 22(6): 590-593. DOI: 10.16462/j.cnki.zhjbkz.2018.06.012.

    Tuo XQ, Zhang ZL, Gong Z, et al. Forecasting influenza like illness in Urumqi based on ARIMAX model [J]. Chin J Dis Control Prev, 2018, 22(6): 590-593. DOI: 10.16462/j.cnki.zhjbkz.2018.06.012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (478) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return