Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
JIN Li-juan, XU Quan-li. The spatial pattern and spatio-temporal evolution of COVID-19 in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(11): 1320-1326. doi: 10.16462/j.cnki.zhjbkz.2021.11.015
Citation: JIN Li-juan, XU Quan-li. The spatial pattern and spatio-temporal evolution of COVID-19 in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(11): 1320-1326. doi: 10.16462/j.cnki.zhjbkz.2021.11.015

The spatial pattern and spatio-temporal evolution of COVID-19 in China

doi: 10.16462/j.cnki.zhjbkz.2021.11.015
Funds:

National Natural Science Foundation of China 42161065

National Natural Science Foundation of China 41461038

Yunnan Science and Technology Foundation Special Key Projects 202001AS070032

Young and Middle-Aged Academic and Technical Leaders Reserve Talents Project in Yunnan Province 202105AC160059

More Information
  • Corresponding author: XU Quan-li, E-mail: go2happiness@163.com
  • Received Date: 2021-01-06
  • Rev Recd Date: 2021-04-28
  • Available Online: 2021-12-04
  • Publish Date: 2021-11-10
  •   Objective  To better control the spread of COVID-19, it is important to understand the spatial pattern of COVID-19 and its spatiotemporal evolution characteristics, and explore its distribution and diffusion laws.  Methods  In this study, based on the daily incidence data of COVID-19 in China from January 22 to May 26, 2020, spatial autocorrelation was used to analyze the spatial pattern of COVID-19, and center of gravity trajectory migration algorithm was used to explore spatial-temporal evolution process.  Results  In the study period, COVID-19 had strong spatial dependence at the provincial scale. From January 22 to May 26, 2020, the global spatial correlation of COVID-19 showed a trend of increasing from strong to weak. Moran's I was negative in the range of (-0.04, -0.02) and had a small fluctuation range. The COVID-19 epidemic in China showed a general pattern with Wuhan City in Hubei Province as the center, spreading to the surrounding cities and random distribution. The domestic epidemic were mainly high-low clusters, and high-high clusters were distributed in Hong Kong and Macao Special Administrative Regions, while Hubei Province had been in the high-low clusters. In the study period, the high-low cluster was only one province in Hubei Province, and the low-low clusters were mainly distributed in Heilongjiang Province and Tibet Autonomous Region. During the T1-T3 period, the epidemic spread rapidly from Wuhan City to the northwest. During the T4-T6 period, the epidemic gradually spread to the southwest. During the T7-T9 period, the epidemic spread to the northeast.  Conclusions  In the future epidemic prevention and control work, we should pay more attention to the study of epidemic spatial diffusion model, explore the factors affecting diffusion, so as to provide strong theoretical support for the formulation of precise epidemic prevention measures.
  • loading
  • [1]
    周成虎, 裴韬, 杜云艳, 等. 新冠肺炎疫情大数据分析与区域防控政策建议[J]. 中国科学院院刊, 2020, 35(2): 200-203. DOI: 10.16418/j.issn.1000-3045.20200209001.

    Zhou CH, Pei T, Du YY, et al. Big data analysis on COVID-19 epidemic and suggestions on regional prevention and control policy[J]. Bull Chin Acad Sci, 2020, 35(2): 200-203. DOI: 10.16418/j.issn.1000-3045.20200209001.
    [2]
    金启轩. 中国新冠肺炎疫情预测建模与理性评估[J]. 统计与决策, 2020, 36(5): 11-14. DOI: 10.13546/j.cnki.tjyjc.2020.05.002.

    Jin QX. Novel coronavirus pneumonia epidemic prediction modeling and rational evaluation in China[J]. Statistics & Decision, 2020, 36(5): 11-14. DOI: 10.13546/j.cnki.tjyjc.2020.05.002.
    [3]
    闫丽, 赵新, 乔秋阁. 新冠病毒肺炎COVID-19的临床防护及护理[J]. 基因组学与应用生物学, 2020, 39(8): 3886-3889. DOI: 10.13417/j.gab.039.003886.

    Yan L, Zhao X, Qiao QG. Clinic protection and nursing of COVID-19 caused by SARS-CoV-2[J]. Genomics and Applied Biology, 2020, 39(8): 3886-3889. DOI: 10.13417/j.gab.039.003886.
    [4]
    熊子军, 张喆, 王雅琦, 等. 新型冠状病毒的基因组变异与分子诊断[J]. 西安交通大学学报(医学版), 2020, 41(4): 473-478. DOI: 10.7652/jdyxb202004001.

    Xiong ZJ, Zhang Z, Wang YQ, et al. Genomic variations of SARS-CoV-2 and molecular diagnosis[J]. J Xi'an Jiaotong Univ (Med Sci), 2020, 41(4): 473-478. DOI: 10.7652/jdyxb202004001.
    [5]
    黄婧, 赵秋玲, 徐康, 等. 基于网络数据的新型冠状病毒肺炎流行特征分析[J]. 中华疾病控制杂志, 2020, 24(11): 1338-1342. DOI: 10.16462/j.cnki.zhjbkz.2020.11.018.

    Huang J, Zhao QL, Xu K, et al. Analysis of COVID-19 epidemic characteristics based on network data[J]. Chin J Dis Control Prev, 2020, 24(11): 1338-1342. DOI: 10.16462/j.cnki.zhjbkz.2020.11.018.
    [6]
    李文辉, 邱晓晴. 基于社会网络的城市疫情空间扩散及治理研究—以深圳新冠肺炎病例为依据[EB/OL]. (2020-10-30)[2020-12-07]. http://kns.cnki.net/kcms/detail/31.1626.P.20201030.1400.002.html.

    Li WH, Qiu XQ. Research on spatial spread and control of urban epidemic by social network-based on the prevention and control of COVID-19 in Shenzhen[EB/OL]. (2020-10-30)[2020-12-07]. http://kns.cnki.net/kcms/detail/31.1626.P.20201030.1400.002.html.
    [7]
    王姣娥, 杜德林, 魏冶, 等. 新冠肺炎疫情的空间扩散过程与模式研究[J]. 地理研究, 2020, 39(7): 1450-1462. DOI: 10.11821/dlyj020200329.

    Wang JE, Du DL, Wei Y, et al. The development of COVID-19 in China: spatial diffusion and geographical pattern[J]. Geographical Research, 2020, 39(7): 1450-1462. DOI: 10.11821/dlyj020200329.
    [8]
    金安楠, 李钢, 王皎贝, 等. 深圳市新型冠状病毒肺炎(COVID-19)疫情时空演化与防控对策[J]. 陕西师范大学学报(自然科学版), 2020, 48(3): 18-32. DOI: 10.15983/j.cnki.jsnu.2020.03.017.

    Jin AN, Li G, Wang JB, et al. Spatio-temporal evolution and control strategies of COVID-19 epidemic in Shenzhen, China[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2020, 48(3): 18-32. DOI: 10.15983/j.cnki.jsnu.2020.03.017.
    [9]
    Anselin L. Local indicators of spatial association—LISA[J]. Geogr Anal, 1995, 27(2): 93-115. DOI: 10.1111/j.1538-4632.1995.tb00338.x.
    [10]
    张延炀, 肖占沛, 杨凯朝, 等. 河南省新型冠状病毒肺炎时空聚集性[J]. 中华疾病控制杂志, 2020, 24(5): 534-538, 572. DOI: 10.16462/j.cnki.zhjbkz.2020.05.008.

    Zhang YY, Xiao ZP, Yang KC, et al. Study on the spatiotemporal clusters of coronavirus disease 2019 in Henan Province[J]. Chin J Dis Control Prev, 2020, 24(5): 534-538, 572. DOI: 10.16462/j.cnki.zhjbkz.2020.05.008.
    [11]
    陈晓, 黄宇金, 李佳慧, 等. COVID-19疫情时空聚集性特征及影响因素分析—以重庆市为例[J]. 地理科学进展, 2020, 39(11): 1798-1808. DOI: 10.18306/dlkxjz.2020.11.002.

    Chen X, Huang YJ, Li JH, et al. Clustering characteristics of COVID-19 cases and influencing factors in Chongqing Municipality[J]. Progress in Geography, 2020, 39(11): 1798-1808. DOI: 10.18306/dlkxjz.2020.11.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (779) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return