Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 26 Issue 5
May  2022
Turn off MathJax
Article Contents
YANG Shan-lan, WU Lei, TU Jia-xin, DENG Li-fang, HUANG He-lang. Research progress of free radical induced aging[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(5): 589-594. doi: 10.16462/j.cnki.zhjbkz.2022.05.017
Citation: YANG Shan-lan, WU Lei, TU Jia-xin, DENG Li-fang, HUANG He-lang. Research progress of free radical induced aging[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(5): 589-594. doi: 10.16462/j.cnki.zhjbkz.2022.05.017

Research progress of free radical induced aging

doi: 10.16462/j.cnki.zhjbkz.2022.05.017
Funds:

National Natural Science Foundation of China 81960620

National Natural Science Foundation of China 81360446

More Information
  • Corresponding author: HUANG He-lang, E-mail: hhlang0821@sina.com
  • Received Date: 2021-08-11
  • Rev Recd Date: 2021-12-27
  • Available Online: 2022-05-11
  • Publish Date: 2022-05-10
  • The theory of free radical-induced aging (FRTA), first proposed by Denham Harman in 1954, believes that free radicals generated in the environment and from internal metabolism can damage cell components, thus damaging human function and accelerating aging. The research of human aging has developed rapidly, there are many theories and great debates, but the free radical theory has drawn wide attention. Most works of literature have given this theory some academic support as they affirm the fact that free radicals can cause aging and induce some chronic diseases. This paper summarizes the connotation and pathogenesis of free radicals from the aspects of biomedicine, molecular epidemiology and epidemiology, focuses on the progress of research on free radical in recent years and reveals the gap between the traditional understanding. At the same time, the paper puts forward a possible path of free radical-induced aging: free radicals act on the body continuously, dynamically and circularly. Aging can only occur when a certain cyclic balance is broken. This path brings opportunities and thoughts on preventing aging, reducing chronic diseases and delaying aging.
  • loading
  • [1]
    联合国人口司. 人口数据[EB/OL]. (2020-10-01)[2021-11-27]. https://www.un.org/development/desa/pd/.

    United Nations Population Division. Population data[EB/OL]. (2020-10-01)[2021-11-27]. https://www.un.org/development/desa/pd/.
    [2]
    国家统计局. 人口数据[EB/OL]. (2020-01-30)[2021-11-27]. http://www.stats.gov.cn/.

    National Bureau of Statistics. Population data[EB/OL]. (2020-01-30)[2021-11-27]. http://www.stats.gov.cn/.
    [3]
    Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009[J]. Biogerontology, 2009, 10(6): 773-781. DOI: 10.1007/s10522-009-9234-2.
    [4]
    McCord JM, Fridovich I. Superoxide dismutase: the first twenty years (1968-1988)[J]. Free Radic Biol Med, 1988, 5(5-6): 363-369. DOI: 10.1016/0891-5849(88)90109-8.
    [5]
    Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view[J]. Curr Aging Sci, 2008, 1(1): 10-21. DOI: 10.2174/1874609810801010010.
    [6]
    Koppenol WH, Sies H. Two centuries since discovery of dawn-of-life molecule[J]. Nature, 2018, 559(7713): 181. DOI: 10.1038/d41586-018-05674-0.
    [7]
    Studer A, Curran DP. Catalysis of Radical Reactions: A Radical Chemistry Perspective[J]. Angew Chem Int Ed Engl, 2016, 55(1): 58-102. DOI: 10.1002/anie.201505090.
    [8]
    Hayyan M, Hashim MA, AlNashef IM. Superoxide Ion: Generation and Chemical Implications[J]. Chem Rev, 2016, 116(5): 3029-3085. DOI: 10.1021/acs.chemrev.5b00407.
    [9]
    Jakubczyk K, Dec K, Kaɫduńska J, et al. Reactive oxygen species- sources, functions, oxidative damage[J]. Pol Merkur Lekarski, 2020, 48(284): 124-127.
    [10]
    Liu ZQ. Bridging free radical chemistry with drug discovery: A promising way for finding novel drugs efficiently[J]. Eur J Med Chem, 2020, 189: 112020. DOI: 10.1016/j.ejmech.2019.112020.
    [11]
    Itoh S. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions[J]. Acc Chem Res, 2015, 48(7): 2066-2074. DOI: 10.1021/acs.accounts.5b00140.
    [12]
    Wang XQ, Gao F, Zhang XZ. Initiator-Loaded Gold Nanocages as a Light-Induced Free-Radical Generator for Cancer Therapy[J]. Angew Chem Int Ed Engl, 2017, 56(31): 9029-9033. DOI: 10.1002/anie.201703159.
    [13]
    Koltover VK. Free Radical Timer of Aging: from Chemistry of Free Radicals to Systems Theory of Reliability[J]. Curr Aging Sci, 2017, 10(1): 12-17. DOI: 10.2174/1874609809666161009220822.
    [14]
    Ma S, Fu A, Lim S, et al. MnSOD mediates shear stress-promoted tumor cell migration and adhesion[J]. Free Radic Biol Med, 2018, 129: 46-58. DOI: 10.1016/j.freeradbiomed.2018.09.004.
    [15]
    Sun Z, Wang X, Liu C, et al. Persistent Free Radicals from Low-Molecular-Weight Organic Compounds Enhance Cross-Coupling Reactions and Toxicity of Anthracene on Amorphous Silica Surfaces under Light[J]. Environ Sci Technol, 2021, 55(6): 3716-3726. DOI: 10.1021/acs.est.0c07472.
    [16]
    Wang XQ, Gao F, Zhang XZ. Initiator-loaded gold nanocages as a light-induced free-radical generator for cancer therapy[J]. Angew Chem Int Ed Engl, 2017, 56(31): 9029-9033. DOI: 10.1002/anie.201703159.
    [17]
    Wang Z, Ayarza J, Esser-Kahn AP. Mechanically initiated bulk-scale free-radical polymerization[J]. Angew Chem Int Ed Engl, 2019, 58(35): 12023-12026. DOI: 10.1002/anie.201903956.
    [18]
    Xie J, Wang C, Wang N, et al. Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage[J]. Biomaterials, 2020, 244: 119940. DOI: 10.1016/j.biomaterials.2020.119940.
    [19]
    Cai K, Shi Y, Cao C, et al. Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes[J]. Chem Sci, 2019, 11(1): 107-112. DOI: 10.1039/c9sc04860j.
    [20]
    do Vale GT, Leoni D, Sousa AH, et al. Acute restraint stress increases blood pressure and oxidative stress in the cardiorenal system of rats: a role for AT1 receptors[J]. Stress, 2020, 23(3): 328-337. DOI: 10.1080/10253890.2019.1675627.
    [21]
    Di Meo S, Venditti P. Evolution of the knowledge of free radicals and other oxidants[J]. Oxid Med Cell Longev, 2020, 2020: 9829176. DOI: 10.1155/2020/9829176.
    [22]
    Srivastava S, Singh D, Patel S, et al. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders[J]. Int J Biol Macromol, 2017, 101: 502-517. DOI: 10.1016/j.ijbiomac.2017.03.100.
    [23]
    Gasek NS, Kuchel GA, Kirkland JL, et al. Strategies for targeting senescent cells in human disease[J]. Nat Aging, 2021, 1(10): 870-879. DOI: 10.1038/s43587-021-00121-8.
    [24]
    Kale A, Sharma A, Stolzing A, et al. Role of immune cells in the removal of deleterious senescent cells[J]. Immun Ageing, 2020, 17: 16. DOI: 10.1186/s12979-020-00187-9.
    [25]
    Weßing J, Ganesamoorthy C, Kahlal S, et al. The mackay-type cluster[Cu43 Al12](Cp*)12 : Open-shell 67-electron superatom with emerging metal-like electronic structure[J]. Angew Chem Int Ed Engl, 2018, 57(44): 14630-14634. DOI: 10.1002/anie.201806039.
    [26]
    Kimura S, Uejima M, Ota W, et al. An open-shell, luminescent, two-dimensional coordination polymer with a honeycomb lattice and triangular organic radical[J]. J Am Chem Soc, 2021, 143(11): 4329-4338. DOI: 10.1021/jacs.0c13310.
    [27]
    杨新平, 王海潮, 谭照峰, 等. OH自由基总反应性的实地测量[J]. 化学学报, 2019, 77(7): 613-624. DOI: 10.6023/A19030094.

    Yang XP, Wang HC, Tan ZF, et al. Observations of OH radical reactivity in field st-udies[J]. Acta Chimica Sinica, 2019, 77(7): 613-624. DOI:10. 6023/A19030094.
    [28]
    Rossi-Ashton JA, Clarke AK, Unsworth WP, et al. Phosphoranyl radical fragmentation reactions driven by photoredox catalysis[J]. ACS Catal, 2020, 10(13): 7250-7261. DOI: 10.1021/acscatal.0c01923.
    [29]
    Nguyen HV, Detappe A, Harvey P, et al. Pro-organic radical contrast agents ("pro-ORCAs") for real-time MRI of pro-drug activation in biological systems[J]. Polym Chem, 2020, 11(29): 4768-4779. DOI: 10.1039/d0py00558d.
    [30]
    Tang B, Li WL, Chang Y, et al. A supramolecular radical dimer: high-efficiency NIR-Ⅱ photothermal conversion and Therapy[J]. Angew Chem Int Ed Engl, 2019, 58(43): 15526-15531. DOI: 10.1002/anie.201910257.
    [31]
    Sato Y, Yanagita M. Immunology of the ageing kidney[J]. Nat Rev Nephrol, 2019, 15(10): 625-640. DOI: 10.1038/s41581-019-0185-9.
    [32]
    Kizilay Mancini O, Lora M, Cuillerier A, et al. Mitochondrial oxidative stress reduces the immunopotency of mesenchymal stromal cells in adults with coronary artery disease[J]. Circ Res, 2018, 122(2): 255-266. DOI: 10.1161/CIRCRESAHA.117.311400.
    [33]
    Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155(3): 629-647. DOI: 10.1053/j.gastro.2018.06.083.
    [34]
    Schneider JL, Rowe JH, Garcia-de-Alba C, et al. The aging lung: physiology, disease, and immunity[J]. Cell, 2021, 184(8): 1990-2019. DOI: 10.1016/j.cell.2021.03.005.
    [35]
    Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57. DOI: 10.1038/s41584-020-00533-7.
    [36]
    Luo YX, Tang X, An XZ, et al. SIRT4 accelerates Ang Ⅱ-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity[J]. Eur Heart J, 2017, 38(18): 1389-1398. DOI: 10.1093/eurheartj/ehw138.
    [37]
    Kim JS, Kim H, Yim B, et al. Identification and molecular characterization of two Cu/Zn-SODs and Mn-SOD in the marine ciliate Euplotes crassus: Modulation of enzyme activity and transcripts in response to copper and cadmium[J]. Aquat Toxicol, 2018, 199: 296-304. DOI: 10.1016/j.aquatox.2018.03.020.
    [38]
    Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility[J]. Cell, 2015, 160(5): 816-827. DOI: 10.1016/j.cell.2015.02.010.
    [39]
    Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier[J]. Nat Rev Drug Discov, 2016, 15(8): 551-567. DOI: 10.1038/nrd.2016.39.
    [40]
    Jaligama S, Patel VS, Wang P, et al. Radical containing combustion derived particulate matter enhance pulmonary Th17 inflammation via the aryl hydrocarbon receptor[J]. Part Fibre Toxicol, 2018, 15(1): 20. DOI: 10.1186/s12989-018-0255-3.
    [41]
    Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span[J]. Nat Med, 2019, 25(12): 1822-1832. DOI: 10.1038/s41591-019-0675-0.
    [42]
    Wang XQ, Wang W, Peng M, et al. Free radicals for cancer theranostics[J]. Biomaterials, 2021, 266: 120474. DOI: 10.1016/j.biomaterials.2020.120474.
    [43]
    Stone WL, Papas AM. Tocopherols and the etiology of colon cancer[J]. J Natl Cancer Inst, 1997, 89(14): 1006-1014. DOI: 10.1093/jnci/89.14.1006.
    [44]
    Ornstein MC, Rini BI. Radical shifts in the first-line management of metastatic renal cell carcinoma[J]. Nat Rev Clin Oncol, 2019, 16(2): 71-72. DOI: 10.1038/s41571-018-0146-4.
    [45]
    Kim EB, Fang X, Fushan AA, et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat[J]. Nature, 2011, 479(7372): 223-227. DOI: 10.1038/nature10533.
    [46]
    Shi J, Yu W, Xu L, et al. Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxygen regulating[J]. Nano Lett, 2020, 20(1): 780-789. DOI: 10.1021/acs.nanolett.9b04974.
    [47]
    Dues DJ, Schaar CE, Johnson BK, et al. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans[J]. Free Radic Biol Med, 2017, 108: 362-373. DOI: 10.1016/j.freeradbiomed.2017.04.004.
    [48]
    Wang XQ, Gao F, Zhang XZ. Initiator-loaded gold nanocages as a light-induced free-radical generator for cancer therapy[J]. Angew Chem Int Ed Engl, 2017, 56(31): 9029-9033. DOI: 10.1002/anie.201703159.
    [49]
    Huang G, Qiu Y, Yang F, et al. Magnetothermally triggered free-radical generation for deep-seated tumor treatment[J]. Nano Lett, 2021, 21(7): 2926-2931. DOI: 10.1021/acs.nanolett.1c00009.
    [50]
    Hekimi S, Lapointe J, Wen Y. Taking a "good" look at free radicals in the aging process[J]. Trends Cell Biol, 2011, 21(10): 569-576. DOI: 10.1016/j.tcb.2011.06.008.
    [51]
    Höhn A, Weber D, Jung T, et al. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence[J]. Redox Biol, 2017, 11: 482-501. DOI: 10.1016/j.redox.2016.12.001.
    [52]
    Sishc BJ, Ding L, Nam TK, et al. Avasopasem manganese synergizes with hypofractionated radiation to ablate tumors through the generation of hydrogen peroxide[J]. Sci Transl Med, 2021, 13(593): eabb3768. DOI: 10.1126/scitranslmed.abb3768.
    [53]
    Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore[J]. Aging Cell, 2017, 16(5): 943-955. DOI: 10.1111/acel.12650.
    [54]
    Davalli P, Mitic T, Caporali A, et al. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases[J]. Oxid Med Cell Longev, 2016, 2016: 3565127. DOI: 10.1155/2016/3565127.
    [55]
    Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing[J]. Int J Mol Sci, 2020, 21(20): 7580. DOI: 10.3390/ijms21207580.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (1167) PDF downloads(177) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return