Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 27 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHANG Weichang, TIAN Jing, YANG Hong, HAN Qinghua, ZHANG Yanbo. 5-year all-cause mortality survival analysis and interpretable study in patients with coronary artery disease combined with chronic heart failure[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(4): 373-378. doi: 10.16462/j.cnki.zhjbkz.2023.04.001
Citation: ZHANG Weichang, TIAN Jing, YANG Hong, HAN Qinghua, ZHANG Yanbo. 5-year all-cause mortality survival analysis and interpretable study in patients with coronary artery disease combined with chronic heart failure[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(4): 373-378. doi: 10.16462/j.cnki.zhjbkz.2023.04.001

5-year all-cause mortality survival analysis and interpretable study in patients with coronary artery disease combined with chronic heart failure

doi: 10.16462/j.cnki.zhjbkz.2023.04.001
Funds:

National Natural Science Foundation of China 81872714

National Natural Science Foundation of China 82173631

Shanxi Provincial Key Laboratory 201805D111006

More Information
  • Corresponding author: HAN Qinghua, E-mail: syhqh@sohu.com; ZHANG Yanbo, E-mail: sxmuzyb@126.com
  • Received Date: 2022-05-06
  • Rev Recd Date: 2023-01-09
  • Available Online: 2023-04-28
  • Publish Date: 2023-04-10
  •   Objective   To investigate the risk factors for all-cause mortality in patients with coronary heart disease combined with chronic heart failure by using machine learning algorithms and shapley additive explanations (SHAP).  Methods   A total of 2 648 patients diagnosed with coronary heart disease combined with chronic heart failure in two tertiary hospitals in Shanxi Province were selected for the study. The Cox, random survival forests (RSF), and XGBoost models were constructed using the variables screened by XGBoost; SHAP was applied to analyze the model interpretability.  Results   The prediction model created using XGBoost had the highest predictive performance with a concordance index (C-index) of 0.902 (0.900-0.915). The model showed that higher age, NTproBNP, systolic blood pressure, and creatinine were associated with a higher risk of death. Diabetes, central nervous system disorders, and statins significantly influenced patient prognosis.  Conclusions   The survival analysis prediction model constructed by XGBoost can more accurately assess the poor prognosis of patients and, in combination with SHAP, can provide a clear interpretation of individualized risk prediction for patients. It is helpful to assist doctors in personalizing clinical treatment for patients.
  • loading
  • [1]
    北京高血压防治协会, 北京糖尿病防治协会, 北京慢性病防治与健康教育研究会, 等. 基层心血管病综合管理实践指南2020[J]. 中国医学前沿杂志(电子版), 2020, (8): 1-73. DOI: 10.12037/YXQY.2020.08-01.

    Beijing Hypertension Association, Beijing Diabetes Prevention and Treatment Association, Beijing Research for Chronic Diseases Control and Health Education, et al. Practice Guide for comprehensive management of cardiovascular diseases at the grassroots level 2020[J]. Chinese Journal of the Frontiers of Medical Science(Electronic Version), 2020, (8): 1-73. DOI: 10.12037/YXQY.2020.08-01.
    [2]
    Savarese G, Lund LH. Global public health burden of heart failure[J]. Card Fail Rev, 2017, 3(1): 7-11. DOI: 10.15420/cfr.2016:25:2.
    [3]
    Van HL, Carson JAS, Appel LJ, et al. Recommended dietary pattern to achieve adherence to the American heart association/american college of cardiology (AHA/ACC) guidelines: a scientific statement from the American heart association[J]. Circulation, 2016, 134(22): e505-e529. DOI: 10.1161/CIR.0000000000000462.
    [4]
    王增武, 胡盛寿. 《中国心血管健康与疾病报告2020》要点解读[J]. 中国心血管杂志, 2021, 26(3): 209-218. DOI: 10.3969/j.issn.1007-5410.2021.03.001.

    Wang ZW, Hu ST. Interpretation of report on cardiovascular health and diseases in China 2020[J]. Chin J Cardiovasc Medicine, 2021, 26(3): 209-218. DOI: 10.3969/j.issn.1007-5410.2021.03.001.
    [5]
    王增武, 马志毅, 薛素芳, 等. 基层冠心病与缺血性脑卒中共患管理专家共识2022[J]. 中国心血管病研究, 2022, 20(9): 772-793. DOI: 10.3969/j.issn.1672-5301.2022.09.002.

    Wang ZW, Ma ZY, Xue SF, et al. 2022 expert consensus on the management of coronary heart disease with ischemic stroke in community[J]. Chin J Cardiovasc Res, 2022, 20(9): 772-793. DOI: 10.3969/j.issn.1672-5301.2022.09.002.
    [6]
    杨弘, 田晶, 孟冰霞, 等. 加权随机森林和代价敏感支持向量机与心衰患者死亡风险评估[J]. 中国卫生统计, 2022, 39(3): 381-384, 388. DOI: 10.3969/j.issn.1002-3674.2022.03.012.

    Yang H, Tian J, Meng BX, et al. Weighted random forests and cost-sensitive support vector machines and the assessment of mortality risk in patients with heart failure[J]. Chin J Health Stat, 2022, 39(3): 381-384, 388. DOI: 10.3969/j.issn.1002-3674.2022.03.012.
    [7]
    杨弘, 田晶, 王可, 等. 混合型缺失数据填补方法比较与应用[J]. 中国卫生统计, 2020, 37(3): 395-399. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT202003016.htm

    Yang H, Tian J, Wang K, et al. Comparison and application of hybrid missing data filling methods[J]. Chin J Health Stat, 2020, 37(3): 395-399. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT202003016.htm
    [8]
    Ishwaran H, Kogalur UB, Blackstone EH, et al. Random survival forests[J]. Ann Appl Stat, 2008, 2(3): 841-860. DOI: 10.1214/08-AOAS169.
    [9]
    陈哲, 许恒敏, 李哲轩, 等. 随机生存森林: 基于机器学习算法的生存分析模型[J]. 中华预防医学杂志, 2021, 55(1): 104-109. DOI: 10.3760/cma.j.cn112150-20200911-01197.

    Chen Z, Xu HM, Li ZX, et al. Random survival forest: applying machine learning algorithm in survival analysis of biomedical data[J]. Chin J Prevent Med, 2021, 55(1): 104-109. DOI: 10.3760/cma.j.cn112150-20200911-01197.
    [10]
    Chen TQ, Carlos G. XGBoost: a scalable tree boosting system[J]. ACM, 2016, 785-794.
    [11]
    潘进, 丁强, 江爱朋, 等. 基于XGBoost的冷水机组不平衡数据故障诊断[J]. 机械强度, 2021, 43(1): 27-33. DOI: 10.16579/j.issn.1001.9669.2021.01.004.

    Pan J, Ding Q, Jiang AP, et al. Fault diagnosis of unbalanced data of chillers based on XGBoost[J]. J Mechanical Strength, 2021, 43(1): 27-33. DOI: 10.16579/j.issn.1001.9669.2021.01.004.
    [12]
    Lundberg S, Lee S I. A unified approach to interpreting model predictions[C]// Conference and Workshop on Neural Information Processing Systems. California: NIPS Press, 2017: 4765-4774.
    [13]
    Agus Salim, E ST, Vincent YT, et al. C-reactive protein and serum creatinine, but not haemoglobin A1c, are independent predictors of coronary heart disease risk in non-diabetic Chinese[J]. Eur J Prev Cardiol, 2016, 23(12): 1339-1349. DOI: 10.1177/2047487315626547.
    [14]
    Chami J, Fleming S, Taylor C, et al. Point-of-care NT-proBNP monitoring for heart failure: observational feasibility study in primary care[J]. BJGP open, 2022, 6(3): BJGPO. 2022.0005. DOI: 10.3399/BJGPO.2022.0005.
    [15]
    Dunlay SM, Givertz MM, Aguilar D, et al. Type 2 diabetes mellitus and heart failure: a scientific statement from the American heart association and the heart failure society of America: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update[J]. Circulation, 2019, 140(7): e294-e324. DOI: 10.1161/CIR.0000000000000691.
    [16]
    Wang J, Wu XF, Li YR, et al. Serum bilirubin concentrations and incident coronary heart disease risk among patients with type 2 diabetes: the Dongfeng-Tongji cohort[J]. Acta Diabetol, 2017, 54(3): 257-264. DOI: 10.1007/s00592-016-0946-x.
    [17]
    Arnold Suzanne V, Bhatt Deepak L, Barsness Gregory W, et al. Clinical management of stable coronary artery disease in patients with Type 2 diabetes mellitus: A scientific statement from the American heart association[J]. Circulation, 2020, 141(19). DOI: 10.1161/CIR.0000000000000766.
    [18]
    Zhang JJ, Guo Q, Peng LY, et al. The association of neck circumference with incident congestive heart failure and coronary heart disease mortality in a community-basedpopulation with or without sleep-disordered breathing[J]. BMC Cardiovasc Disord, 2018, 18(1): 108. DOI: 10.1186/s12872-018-0846-9.
    [19]
    Yoshihisa A, Sato T, Kajimoto K, et al. Heterogeneous impact of body mass index on in-hospital mortality in acute heart failure syndromes: an analysis from the ATTEND registry[J]. Eur Heart J Acute Cardiovasc Care, 2019, 8(7): 589-598. DOI: 10.1177/2048872617703061.
    [20]
    韩嫱, 田晶, 闫晶晶, 等. 冠心病合并心力衰竭患者再住院影响因素的多水平模型[J]. 中华疾病控制杂志, 2019, 23(8): 961-965. DOI: 10.16462/j.cnki.zhjbkz.2019.08.015.

    Han Q, Tian J, Yan JJ, et al. Multilevel model analysis for influencing factors of readmission in coronary heart disease patients with heart failure[J]. Chin J Dis Control Prev, 2019, 23(8): 961-965. DOI: 10.16462/j.cnki.zhjbkz.2019.08.015.
    [21]
    李靓, 田晶, 闫晶晶, 等. 冠心病合并慢性心力衰竭患者不同结局的零膨胀联合脆弱模型[J]. 中华疾病控制杂志, 2021, 25(8): 962-967. DOI: 10.16462/j.cnki.zhjbkz.2021.08.016.

    Li J, Tian J, Yan JJ, et al. Joint frailty models for zero-inflated analysis of different outcomes in patients with coronary heart disease complicated with chronic heart failure[J]. Chin J Dis Control Prev, 2021, 25(8): 962-967. DOI: 10.16462/j.cnki.zhjbkz.2021.08.016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (762) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return