Citation: | ZHANG Ruimin, WANG Keke, LI Jinbo, CHEN Zhuanzhuan, YANG Hailan, WU Weiwei, FENG Yongliang, WANG Suping, ZHANG Xinri. Risk prediction of small for gestational age birth based on machine learning algorithms[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(8): 922-927. doi: 10.16462/j.cnki.zhjbkz.2023.08.009 |
[1] |
Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee[J]. World Health Organ Tech Rep Ser, 1995, 854: 1-452.
|
[2] |
Lee AC, Katz J, Blencowe H, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010[J]. Lancet Glob Health, 2013, 1(1): e26-e36. DOI: 10.1016/S2214-109X(13)70006-8.
|
[3] |
沈忠周, 王雅文, 马帅, 等. 新生儿早产、低出生体重及小于胎龄的危险因素[J]. 中华流行病学杂志, 2019, 40(9): 1125-1129. DOI: 10.3760/cma.j.issn.0254-6450.2019.09.020.
Shen ZZ, Wang YW, Ma S, et al. Risk factors for preterm birth, low birth weight and small for gestational age: a prospective cohort study[J]. Chin J Epidemiol, 2019, 40(9): 1125-1129. DOI: 10.3760/cma.j.issn.0254-6450.2019.09.020.
|
[4] |
von Beckerath AK, Kollmann M, Rotky-Fast C, et al. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction[J]. Am J Obstet Gynecol, 2013, 208(2): 130. e1-130. e6. DOI: 10.1016/j.ajog.2012.11.014.
|
[5] |
Eves R, Mendonça M, Bartmann P, et al. Small for gestational age-cognitive performance from infancy to adulthood: an observational study[J]. BJOG, 2020, 127(13): 1598-1606. DOI: 10.1111/1471-0528.16341.
|
[6] |
Lindqvist PG, Molin J. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome?[J]. Ultrasound Obstet Gynecol, 2005, 25(3): 258-264. DOI: 10.1002/uog.1806.
|
[7] |
D'Ascenzo F, De Filippo O, Gallone G, et al. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets[J]. Lancet, 2021, 397(10270): 199-207. DOI: 10.1016/S0140-6736(20)32519-8.
|
[8] |
欧阳平, 李小溪, 冷芬, 等. 机器学习算法在体检人群糖尿病风险预测中的应用[J]. 中华疾病控制杂志, 2021, 25(7): 849-853, 868. DOI: 10.16462/j.cnki.zhjbkz.2021.07.020.
Ouyang P, Li XX, Leng F, et al. Application of machine learning algorithm in diabetes risk prediction of physical examination population[J]. Chin J Dis Control Prev, 2021, 25(7): 849-853, 868. DOI: 10.16462/j.cnki.zhjbkz.2021.07.020.
|
[9] |
朱丽, 张蓉, 张淑莲, 等. 中国不同胎龄新生儿出生体重曲线研制[J]. 中华儿科杂志, 2015, 53(2): 97-103. DOI: 10.3760/cma.j.issn.0578-1310.2015.02.007.
Zhu L, Zhang R, Zhang SL, et al. Chinese neonatal birth weight curve for different gestational age[J]. Chin J Pediatr, 2015, 53(2): 97-103. DOI: 10.3760/cma.j.issn.0578-1310.2015.02.007.
|
[10] |
中国肥胖问题工作组数据汇总分析协作组. 我国成人体重指数和腰围对相关疾病危险因素异常的预测价值: 适宜体重指数和腰围切点的研究[J]. 中华流行病学杂志, 2002, 23(1): 5-10. DOI: 10.3760/j.issn:0254-6450.2002.01.003.
Coorperative Meta-analysis Group of China Obesity Task Force. Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population[J]. Chin J Epidemiol, 2002, 23(1): 5-10. DOI: 10.3760/j.issn:0254-6450.2002.01.003.
|
[11] |
Li Y, Guo H, Xiao L, et al. Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data[J]. Knowledge-Based Systems, 2016, 94: 88-104. DOI: 10.1016/j.knosys.2015.11.013.
|
[12] |
Royal College of Obstetricians and Gynaecologists. The investigation and management of the small for gestational age fetus. Green-top Guideline No. 31[EB/OL]. (2013-03-22)[2023-02-16].
|
[13] |
Papastefanou I, Wright D, Lolos M, et al. Competing-risks model for prediction of small-for-gestational-age neonate from maternal characteristics, serum pregnancy-associated plasma protein-A and placental growth factor at 11-13 weeks' gestation[J]. Ultrasound Obstet Gynecol, 2021, 57(3): 392-400. DOI: 10.1002/uog.23118.
|
[14] |
Gürgen F, Zengin Z, Varol F. Intrauterine growth restriction (IUGR) risk decision based on support vector machines[J]. Expert Syst Appl, 2012, 39(3): 2872-2876. DOI: 10.1016/j.eswa.2011.08.147.
|
[15] |
Gardosi J, Madurasinghe V, Williams M, et al. Maternal and fetal risk factors for stillbirth: population based study[J]. BMJ, 2013, 346: f108. DOI: 10.1136/bmj.f108.
|
[16] |
Gurung S, Tong HH, Bryce E, et al. A systematic review on estimating population attributable fraction for risk factors for small-for-gestational-age births in 81 low-and middle-income countries[J]. J Glob Health, 2022, 12: 04024. DOI: 10.7189/jogh.12.04024.
|
[17] |
Parihar S, Singh S. Perinatal outcomes and intrahepatic cholestasis of pregnancy: a prospective study[J]. Int J Reprod Contracept Obstet Gynecol, 2019, 8(3): 1177-1182. DOI: 10.18203/2320-1770.ijrcog20190901.
|
[18] |
Natarajan V, Singh P, Vigneshwar NKV, et al. Maternal and placental risk factors for small gestational age and fetal malnutrition[J]. Curr Pediatr Rev, 2023, 19(2): 187-196. DOI: 10.2174/1573396318666220705154424.
|
[19] |
Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review[J]. J Biomed Inform, 2002, 35(5-6): 352-359. DOI: 10.1016/S1532-0464(03)00034-0.
|
[20] |
Vapnik VN, Kotz S. Estimation of dependences based on empirical data[M]. New York: Springer Science & Business Media, 2006: 232-457.
|