Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 27 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
WANG Rongrong, ZHOU Qianyu, GUO Yuanli, WANG Panpan, HE Wenqian, ZHAO Mingyang, ZHANG Peijia, HU Bo, WU Tiantian, YAO Zihui, WANG Yu, SUN Changqing. Development and validation of a risk prediction model for venous thromboembolism in stroke patients[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(10): 1161-1166. doi: 10.16462/j.cnki.zhjbkz.2023.10.008
Citation: WANG Rongrong, ZHOU Qianyu, GUO Yuanli, WANG Panpan, HE Wenqian, ZHAO Mingyang, ZHANG Peijia, HU Bo, WU Tiantian, YAO Zihui, WANG Yu, SUN Changqing. Development and validation of a risk prediction model for venous thromboembolism in stroke patients[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(10): 1161-1166. doi: 10.16462/j.cnki.zhjbkz.2023.10.008

Development and validation of a risk prediction model for venous thromboembolism in stroke patients

doi: 10.16462/j.cnki.zhjbkz.2023.10.008
Funds:

National Social Science Foundation of China 20BRK041

The Key Science and Technology Program of Henan Province 212102310767

More Information
  • Corresponding author: SUN Changqing, E-mail: suncq@zzu.edu.cn
  • Received Date: 2022-10-21
  • Rev Recd Date: 2023-01-13
  • Available Online: 2023-10-23
  • Publish Date: 2023-10-10
  •   Objective  To develop and validate the risk prediction model of venous thromboembolism (VTE) in stroke patients, so as to provide a scientific basis for the prevention and control of VTE.  Methods  A total of 675 stroke patients were enrolled from our stroke cohort of Henan Province. The data were randomly divided into a training (473 patients) and a testing dataset (202 patients) by a ratio of 7∶3. Then, we used a random forest algorithm for variable selection and logistic regression analysis to construct the model, and a nomogram was drawn. The prediction efficiency of the model was evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow test. Decision curve analysis (DCA) was used to evaluate the clinical application value of the model and the five-fold cross-validation was utilized to verify the model internally.  Results  The predictors that ultimately entered the prediction model were age, hospital stays, ADL, myodynamia, uric acid, D-dimer, fibrinogen, and total cholesterol. In the training dataset, the Hosmer-Lemeshow test yielded P=0.872 and the AUC was 0.924 (95% CI: 0.898-0.950). The testing dataset showed that the Hosmer-Lemeshow test yielded P=0.597 and the AUC was 0.902 (95% CI: 0.852-0.951). DCA curves indicated that the model had high clinical net benefits in both datasets. Internal verification presented that the average AUCs of the model in the training and testing datasets were 0.913 and 0.929, respectively.  Conclusions  The risk prediction model developed in this study can effectively predict VTE occurrence in stroke patients, offering a valuable tool for identifying high-risk individuals and implementing early preventive measures.
  • loading
  • [1]
    王深明. 静脉血栓栓塞症诊治现状与展望[J]. 中国实用外科杂志, 2010, 30(12): 992-994. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWK201012004.htm

    Wang SM. The present situation and forecast of venous thromboembolism[J]. Chin J Pract Surg, 2010, 30(12): 992-994. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWK201012004.htm
    [2]
    Liu XC, Chen XW, Li ZL, et al. Anatomical distribution of lower-extremity deep venous thrombosis in patients with acute stroke[J]. J Stroke Cerebrovasc Dis, 2020, 29(7): 104866. DOI: 10.1016/j.jstrokecerebrovasdis.2020.104866.
    [3]
    Khan F, Tritschler T, Kahn SR, et al. Venous thromboembolism[J]. Lancet, 2021, 398(10294): 64-77. DOI: 10.1016/S0140-6736(20)32658-1.
    [4]
    Ding DL, Sekar P, Moomaw CJ, et al. Venous thromboembolism in patients with spontaneous intracerebral hemorrhage: a multicenter study[J]. Neurosurgery, 2018, 84(6): E304-E310. DOI: 10.1093/neuros/nyy333.
    [5]
    Kahn SR, Morrison DR, Diendere G, et al. Interventions for implementation of thromboprophylaxis in hospitalized patients at risk for venous thromboembolism[J]. Cochrane Database Syst Rev, 2018, 4(4): D8201. DOI: 10.1002/14651858.CD008201.pub3.
    [6]
    谢长清. 脑卒中急性期并发深静脉血栓形成不同风险评估工具的比较研究[D]. 苏州: 苏州大学, 2020.

    Xie CQ. A comparative study of different risk assessment tools for acute stroke complicated with deep vein thrombosis[D]. Suzhou: Suzhou university, 2020.
    [7]
    Yang YQ, Wang X, Huang Y, et al. Ontology-based venous thromboembolism risk assessment model developing from medical records[J]. BMC Med Inform Decis Mak, 2019, 19(Suppl 4): 151. DOI: 10.1186/s12911-019-0856-2.
    [8]
    Pan X, Wang Z, Chen QM, et al. Development and validation of a nomogram for lower extremity deep venous thrombosis in patients after acute stroke[J]. J Stroke Cerebrovasc Dis, 2021, 30(5): 105683. DOI: 10.1016/j.jstrokecerebrovasdis.2021.105683.
    [9]
    陈新宇, 周军良, 李婷婷, 等. 基于随机森林算法和Logistic回归分析的老年肌肉衰减症影响因素[J]. 中华疾病控制杂志, 2022, 26(3): 357-361. DOI: 10.16462/j.cnki.zhjbkz.2022.03.020.

    Chen XY, Zhou JL, Li TT, et al. Influential factors of sarcopenia in older adults based on random forest and Logistic regression[J]. Chin J Dis Control Prev, 2022, 26(3): 357-361. DOI: 10.16462/j.cnki.zhjbkz.2022.03.020.
    [10]
    中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. DOI: 10.3760/cma.j.issn.1006-7876.2019.09.003.

    Chinese Society of Neurology; Chinese Stroke Society. Main diagnostic points of cerebro-vascular diseases in China 2019[J]. Chin J Neurol, 2019, 52(9): 710-715. DOI: 10.3760/cma.j.issn.1006-7876.2019.09.003.
    [11]
    Wang Y, Shi Y, Dong Y, et al. Clinical risk factors of asymptomatic deep venous thrombosis in patients with acute stroke[J]. Clin Appl Thromb Hemost, 2019, 25: 1076029619868534. DOI: 10.1177/1076029619868534.
    [12]
    Cheng HR, Huang GQ, Wu ZQ, et al. Individualized predictions of early isolated distal deep vein thrombosis in patients with acute ischemic stroke: a retrospective study[J]. BMC Geriatr, 2021, 21(1): 140. DOI: 10.1186/s12877-021-02088-y.
    [13]
    Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model[J]. BMJ, 2020, 368: m441. DOI: 10.1136/bmj.m441.
    [14]
    张丹丹, 丁唱, 欧阳朝威, 等. 重型创伤性脑损伤患者发生静脉血栓栓塞的危险因素分析[J]. 中华创伤杂志, 2022, 38(4): 346-353. DOI: 10.3760/cma.j.cn501098-20211202-00631.

    Zhang DD, Ding C, Ou Yang CW, et al. Risk factors of venous thromboembolism in patients with severe traumatic brain injury[J]. Chin J Trauma, 2022, 38(4): 346-353. DOI: 10.3760/cma.j.cn501098-20211202-00631.
    [15]
    Spasić I, Ubavić M, Sumarac Z, et al. Influence of lipid metabolism disorders on venous thrombosis risk[J]. J Med Biochem, 2021, 40(3): 245-251. DOI: 10.5937/jomb0-27106.
    [16]
    Ren WW, Huang QQ, Fan KL, et al. Uric acid played a role in the association between gender and deep vein thrombosis in patients with stroke[J]. Nutr Metab Cardiovasc Dis, 2021, 31(9): 2700-2706. DOI: 10.1016/j.numecd.2021.05.032.
    [17]
    Vila E, Sole M, Masip N, et al. Uric acid treatment after stroke modulates the Kruppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension[J]. Biochem Pharmacol, 2019, 164: 115-128. DOI: 10.1016/j.bcp.2019.04.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (251) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return