Citation: | MA Rui, CHEN Yichao, XIE Hankun, LIU Yu, FAN Yao, TANG Wei, SHEN Chong. Cluster analysis based on glycometabolism-related factors for males and females with normal fasting plasma glucose and the risk of type 2 diabetes mellitus[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(12): 1413-1420. doi: 10.16462/j.cnki.zhjbkz.2023.12.009 |
[1] |
Li YZ, Teng D, Shi XG, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American diabetes association: national cross sectional study[J]. BMJ, 2020, 369: m997. DOI: 10.1136/bmj.m997.
|
[2] |
刘敏. 我国糖尿病地区分布及其疾病负担研究[D]. 北京: 中国疾病预防控制中心, 2019.
Liu M. Geographical distribution and burden of diabetes in China[D]. Beijing: Chinese Center for Disease Control and Prevention, 2019.
|
[3] |
Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective[J]. Endocrinol Metab Clin North Am, 2021, 50(3): 337-355. DOI: 10.1016/j.ecl.2021.05.013.
|
[4] |
Jia WP, Weng JP, Zhu DL, et al. Standards of medical care for type 2 diabetes in China 2019[J]. Diabetes Metab Res Rev, 2019, 35(6): e3158. DOI: 10.1002/dmrr.3158.
|
[5] |
Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables[J]. Lancet Diabetes Endocrinol, 2018, 6(5): 361-369. DOI: 10.1016/S2213-8587(18)30051-2.
|
[6] |
Sarría-Santamera A, Orazumbekova B, Maulenkul T, et al. The identification of diabetes mellitus subtypes applying cluster analysis techniques: a systematic review[J]. Int J Environ Res Public Health, 2020, 17(24): 9523. DOI: 10.3390/ijerph17249523.
|
[7] |
Bauman A, Bull F, Chey T, et al. The international prevalence study on physical activity: results from 20 countries[J]. Int J Behav Nutr Phys Act, 2009, 6(1): 1-11. DOI: 10.1186/1479-5868-6-21.
|
[8] |
Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: classification of energy costs of human physical activities[J]. Med Sci Sports Exerc, 1993, 25(1): 71-80. DOI: 10.1249/00005768-199301000-00011.
|
[9] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华内分泌代谢杂志, 2021, 41(5): 482-548. DOI: 10.3760/cma.j.cn121383-20210825-08063.
Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)[J]. Int J Endocrinol Metab, 2021, 41(5): 482-548. DOI: 10.3760/cma.j.cn121383-20210825-08063.
|
[10] |
Chen B, Tai PC, Harrison R, et al. Novel hybrid hierarchical-K-means clustering method (H-K-means) for microarray analysis[C]. 2005 IEEE computational systems bioinformatics conference- workshops (CSBW'05). August 8-12, 2005, Stanford, CA, USA. IEEE, 2005: 105-108. DOI:
|
[11] |
Ma RCW. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018, 61(6): 1249-1260. DOI: 10.1007/s00125-018-4557-7.
|
[12] |
Liu YC, Li ZM, Xiong H, et al. Understanding of internal clustering validation measures[C]//2010 IEEE International Conference on Data Mining. December 13-17, 2010, Sydney, NSW, Australia. IEEE, 2011: 911-916. DOI:
|
[13] |
Bellary S, Kyrou I, Brown JE, et al. Type 2 diabetes mellitus in older adults: clinical considerations and management[J]. Nat Rev Endocrinol, 2021, 17(9): 534-548. DOI: 10.1038/s41574-021-00512-2.
|
[14] |
Wagner R, Heni M, Tabák AG, et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes[J]. Nat Med, 2021, 27(1): 49-57. DOI: 10.1038/s41591-020-1116-9.
|
[15] |
Zhang XX, Liu J, Shao S, et al. Sex differences in the prevalence of and risk factors for abnormal glucose regulation in adults aged 50 years or older with normal fasting plasma glucose levels[J]. Front Endocrinol (Lausanne), 2020, 11: 531796. DOI: 10.3389/fendo.2020.531796.
|
[16] |
Ryan JC, Barnes M, Cox DN. Identifying modifiable factors that could arrest progression to type 2 diabetes: a cluster analysis of Australian adults[J]. Prev Med, 2021, 153: 106796. DOI: 10.1016/j.ypmed.2021.106796.
|