Citation: | WU Jun, LI Shangjie, ZHANG Jie, YE Dongqing, NI Jindong. Associations between m6A related-mRNA IFIT5 and systemic lupus erythematosus[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(12): 1455-1460. doi: 10.16462/j.cnki.zhjbkz.2023.12.015 |
[1] |
Basta F, Fasola F, Triantafyllias K, et al. Systemic lupus erythematosus (SLE) therapy: the old and the new[J]. Rheumatol Ther, 2020, 7(3): 433-446. DOI: 10.1007/s40744-020-00212-9.
|
[2] |
Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus[J]. Nat Genet, 2015, 47(12): 1457-1464. DOI: 10.1038/ng.3434.
|
[3] |
Wu H, Chang C, Lu Q. The epigenetics of lupus erythematosus[J]. Adv Exp Med Biol, 2020, 1253: 185-207. DOI: 10.1007/978-981-15-3449-2_7.
|
[4] |
Liu C, Yang Z, Li R, et al. Potential roles of N6-methyladenosine (m6A) in immune cells[J]. J Transl Med, 2021, 19(1): 251. DOI: 10.1186/s12967-021-02918-y.
|
[5] |
Wang HM, Hu X, Huang MY, et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation[J]. Nat Commun, 2019, 10: 1898. DOI: 10.1038/s41467-019-09903-6.
|
[6] |
Chen Q, Li H, Liu YS, et al. Epigenetic regulation of immune and inflammatory responses in rheumatoid arthritis[J]. Front Immunol, 2022, 13: 881191. DOI: 10.3389/fimmu.2022.881191.
|
[7] |
Luo Q, Rao JY, Zhang L, et al. The study of METTL14, ALKBH5, and YTHDF2 in peripheral blood mononuclear cells from systemic lupus erythematosus[J]. Mol Genet Genomic Med, 2020, 8(9): e1298. DOI: 10.1002/mgg3.1298.
|
[8] |
Luo Q, Fu BQ, Zhang L, et al. Decreased peripheral blood ALKBH5 correlates with markers of autoimmune response in systemic lupus erythematosus[J]. Dis Markers, 2020, 2020: 8193895. DOI: 10.1155/2020/8193895.
|
[9] |
Wu J, Deng LJ, Xia YR, et al. Involvement of N6-methyladenosine modifications of long noncoding RNAs in systemic lupus erythematosus[J]. Mol Immunol, 2022, 143: 77-84. DOI: 10.1016/j.molimm.2022.01.006.
|
[10] |
Wu YY, Xing J, Li XF, et al. Roles of interferon induced protein with tetratricopeptide repeats (IFIT) family in autoimmune disease[J]. Autoimmun Rev, 2023, 22(11): 103453. DOI: 10.1016/j.autrev.2023.103453.
|
[11] |
Hochberg MC. Updating the american college of rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis and rheumatism, 1997, 40(9): 1725.
|
[12] |
Li LJ, Fan YG, Leng RX, et al. Potential link between m6A modification and systemic lupus erythematosus[J]. Mol Immunol, 2018, 93: 55-63. DOI: 10.1016/j.molimm.2017.11.009.
|
[13] |
Zhang BH, Liu XY, Chen W, et al. IFIT5 potentiates anti-viral response through enhancing innate immune signaling pathways[J]. Acta Biochim Biophys Sin (Shanghai), 2013, 45(10): 867-874. DOI: 10.1093/abbs/gmt088.
|
[14] |
Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000[J]. The Journal of rheumatology, 2002, 29(2): 288-291.
|
[15] |
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology[J]. Nat Rev Rheumatol, 2020, 16(3): 155-166. DOI: 10.1038/s41584-020-0372-x.
|
[16] |
Su R, Dong L, Li YC, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion[J]. Cancer Cell, 2020, 38(1): 79-96. e11. DOI: 10.1016/j.ccell.2020.04.017.
|
[17] |
Li HB, Tong JY, Zhu S, et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J]. Nature, 2017, 548(7667): 338-342. DOI: 10.1038/nature23450.
|
[18] |
Yao YP, Yang Y, Guo WH, et al. METTL3-dependent m6A modification programs T follicular helper cell differentiation[J]. Nat Commun, 2021, 12(1): 1333. DOI: 10.1038/s41467-021-21594-6.
|
[19] |
Hao H, Nakayamada S, Yamagata K, et al. Conversion of T follicular helper cells to T follicular regulatory cells by interleukin-2 through transcriptional regulation in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2021, 73(1): 132-142. DOI: 10.1002/art.41457.
|