Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 27 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
DU Miaomiao, WANG Jia, LI Wenwen, MU Min, ZHU Fenglin, YE Dongqing. Research and progress of miRNA as potential biomarkers for pneumoconiosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(12): 1480-1485. doi: 10.16462/j.cnki.zhjbkz.2023.12.019
Citation: DU Miaomiao, WANG Jia, LI Wenwen, MU Min, ZHU Fenglin, YE Dongqing. Research and progress of miRNA as potential biomarkers for pneumoconiosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(12): 1480-1485. doi: 10.16462/j.cnki.zhjbkz.2023.12.019

Research and progress of miRNA as potential biomarkers for pneumoconiosis

doi: 10.16462/j.cnki.zhjbkz.2023.12.019
Funds:

Independent Research Fund of Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education EK20202002

The Open Research Grant of the Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining EC2021007

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology 13200389

More Information
  • Corresponding author: WANG Jia, E-mail: wangjia@whu.edu.cn; YE Dongqing, E-mail: ydqph@aust.edu.cn
  • Received Date: 2023-06-28
  • Rev Recd Date: 2023-10-04
  • Publish Date: 2023-12-10
  • Pneumoconiosis is one of the most common occupational diseases in China, which has a very complex pathogenesis and lacks effective treatment in clinical practice. MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules that participate in the regulation of post-transcriptional translation by binding to target genes and inhibiting mRNA translation or promoting mRNA degradation. Previous studies have shown that miRNA is closely related to the occurrence and development of pneumoconiosis, which considered to be an important candidate biomarker for early screening and diagnosis for pneumoconiosis. This artide summarizes the current status of miRNA in pneumoconiosis, aiming to provide new ideas and methods for the study of pathogenesis, early warning, diagnosis and treatment of pneumoconiosis.
  • loading
  • [1]
    Adamcakova J, Mokra D. New insights into pathomechanisms and treatment possibilities for lung silicosis[J]. Int J Mol Sci, 2021, 22(8): 4162. DOI: 10.3390/ijms22084162.
    [2]
    Bo C, Zhang J, Sai L, et al. Integrative transcriptomic and proteomic analysis reveals mechanisms of silica-induced pulmonary fibrosis in rats[J]. BMC Pulm Med, 2022, 22(1): 1-12. DOI: 10.1186/s12890-021-01807-w.
    [3]
    Qin X, Lin X, Liu L, et al. Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner[J]. J Cell Mol Med, 2021, 25(9): 4466-4477. DOI: 10.1111/jcmm.16524.
    [4]
    张林. SiO2诱导的巨噬细胞外泌体miRNAs在肺成纤维细胞转分化中的作用[D]. 郑州: 郑州大学, 2018.

    Zhang L. Role of SiO2-induced macrophage exosome miRNAs in lung fibroblast transdifferentiation[D]. Zhengzhou: Zhengzhou University, 2018.
    [5]
    Jp NA, Imanaka M, Suganuma N. Japanese workplace health management in pneumoconiosis prevention[J]. J Occup Health, 2017, 59(2): 91-103. DOI: 10.1539/joh.16-0031-RA.
    [6]
    Hall NB, Blackley DJ, Halldin CN, et al. Current review of pneumoconiosis among US coal miners[J]. Curr Environ Health Rep, 2019, 6: 137-147. DOI: 10.1007/s40572-019-00246-4.
    [7]
    Cho SJ, Lee M, Stout-Delgado HW, et al. DROSHA-dependent miRNA and AIM2 inflammasome activation in idiopathic pulmonary fibrosis[J]. Int J Mol Sci, 2020, 21(5): 1668. DOI: 10.3390/ijms21051668.
    [8]
    Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease[J]. Vet Pathol, 2014, 51(4): 759-774. DOI: 10.1177/0300985813502820.
    [9]
    Zeng M, Zhu L, Li L, et al. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1[J]. Cell Mol Biol Lett, 2017, 22: 1-13. DOI: 10.1186/s11658-017-0041-5.
    [10]
    Wang M, Ye Y, Qian H, et al. Common genetic variants in pre-microRNAs are associated with risk of coal workers' pneumoconiosis[J]. J Hum Genet, 2009, 55(1): 13-17. DOI: 10.1038/jhg.2009.112.
    [11]
    Cui J, Guan Q, Lv H, et al. Three-dimensional nanorod array for label-free surface-enhanced Raman spectroscopy analysis of microRNA pneumoconiosis biomarkers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261: 120015. DOI: 10.1016/j.saa.2021.120015.
    [12]
    Zhang Y, Wang F, Zhou D, et al. Genome-wide analysis of aberrantly expressed microRNAs in bronchoalveolar lavage fluid from patients with silicosis[J]. Ind Health, 2016, 54(4): 361-369. DOI: 10.2486/indhealth.2015-0170.
    [13]
    Tian Y, Cui X, Guan X, et al. Differential expression profile of microRNAs in the lung tissues of coal workers with pneumoconiosis and patients with silicosis[J]. Toxicol Ind Health, 2023, 39(4): 204-217. DOI: 10.1177/07482337231156281.
    [14]
    Zhang J, Hu W, Liu K, et al. Integrated mRNA and microRNA profiling in lung tissue and blood from human silicosis[J]. J Gene Med, 2023, 25(8): e3518. DOI: 10.1002/jgm.3518.
    [15]
    Huang RX, Yu T, Li Y, et al. Upregulated has-miR-4516 as a potential biomarker for early diagnosis of dust-induced pulmonary fibrosis in patients with pneumoconiosis[J]. Toxicol Res, 2018(3): 3. DOI: 10.1039/C8TX00031J.
    [16]
    Guo Li, Ji XM, Yang S, et al. Genome-wide analysis of aberrantly expressed circulating miRNAs in patients with coal workers' pneumoconiosis[J]. Mol Biol Rep, 2013, 40(5): 3739-3747. DOI: 10.1007/s11033-012-2450-x.
    [17]
    Dimitrijevi M, Stanojevi S, Vuji V, et al. Aging oppositely affects TNF-α and IL-10 production by macrophages from different rat strains[J]. Biogerontology, 2014, 15(5): 475-486. DOI: 10.1007/s10522-014-9513-4.
    [18]
    李娟, 郑晋南, 刘云兴, 等. 矽肺病人BALF液mi R-146a及IL-1β的表达特征研究[J]. 现代预防医学, 2020, 47(10): 1852-1855, 1920.

    Li J, Zheng JN, Liu YX, et al. Expression characteristics of BALF solution mi R-146a and IL-1β in patients with silicosis[J]. Modern Prev Med, 2020, 47(10): 1852-1855, 1920.
    [19]
    Fan J, Ji X, Wang S, et al. Regulatory effect of miR-149 on interleukin-6 expression in silica-induced pulmonary fibrosis[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2014, 32(3): 161-167
    [20]
    Tan S, Chen S. The Mechanism and Effect of Autophagy, Apoptosis, and Pyroptosis on the Progression of Silicosis[J]. Int J Mol Sci, 2021;22(15): 8110. DOI: 10.3390/IJMS22158110.
    [21]
    赵阿会. 矽肺相关肺上皮细胞间质转分化中miR-34a-5p的作用[D]. 郑州: 郑州大学, 2020.

    Zhao AH. Role of miR-34a-5p in silicosis-associated pulmonary epithelial cell interstitial transdifferentiation[D]. Zhengzhou: Zhengzhou University, 2020.
    [22]
    Jy A, Ping L A, Hp A, et al. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1[J]. Ecotoxicol Environ Saf, 2021, 220: 112372. DOI: 10.1016/j.ecoenv.2021.112372.
    [23]
    Gao X, Xu D, Li S, et al. Pulmonary Silicosis Alters MicroRNA Expression in Rat Lung and miR-411-3p Exerts Anti-fibrotic Effects by Inhibiting MRTF-A/SRF Signaling[J]. Mol Ther Nucleic Acids, 2020, 20: 851-865. DOI: 10.1016/j.omtn.2020.05.005.
    [24]
    Xu Q, Liu Y, Pan H, et al. Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis[J]. Toxicology, 2019, 414: 57-67. DOI: 10.1016/j.tox.2019.01.007
    [25]
    Yucesoy B, Vallyathan V, Landsittel DP, et al. Cytokine polymorphisms in silicosis and other pneumoconioses[J]. Mol Cell Biochem, 2002, 234(1): 219-224. DOI: 10.1023/A:1015987007360.
    [26]
    Zhang Y, Wang F, Lan Y, et al. Roles of microRNA-146a and microRNA-181b in regulating the secretion of tumor necrosis factor-α and interleukin-1β in silicon dioxide-induced NR8383 rat macrophages[J]. Mol Med Rep, 2015, 12(4): 5587-5593. DOI: 10.3892/mmr.2015.4083.
    [27]
    Ding M, Pei Y, Zhang C, et al. Exosomal miR-125a-5p regulates T lymphocyte subsets to promote silica-induced pulmonary fibrosis by targeting TRAF6[J]. Ecotoxicol Environ Saf, 2023, 249: 114401. DOI: 10.1016/j.ecoenv.2022.114401.
    [28]
    Chen Y, Xu D, Yao J, et al. Inhibition of miR-155-5p exerts anti-fibrotic effects in silicotic mice by regulating meprin α[J]. Mol Ther Nucleic Acids, 2019, 19: 350-360. DOI: 10.1016/j.omtn.2019.11.018.
    [29]
    Yuan J, Li P, Pan H, et al. miR-542-5p attenuates fibroblast activation by targeting integrin α6 in silica-induced pulmonary fibrosis[J]. Int J Mol Sci, 2018, 19(12): 3717. DOI: 10.3390/ijms19123717.
    [30]
    Qian Q, Ma Q, Wang B, et al. MicroRNA-205-5p targets E2F1 to promote autophagy and inhibit pulmonary fibrosis in silicosis through impairing SKP2-mediated Beclin1 ubiquitination[J]. J Cell Mol Med, 2021, 25(19): 9214-9227. DOI: 10.1111/jcmm.16825.
    [31]
    Zhang L, Li J, Hao C, et al. Correction: Up-regulation of exosomal miR-125a in pneumoconiosis inhibits lung cancer development by suppressing expressions of EZH2 and hnRNPK[J]. RSC Adv, 2018, 8(61): 34838. DOI: 10.1039/c8ra03081b.
    [32]
    Xu T, Yan W, Wu Q, et al. MiR-326 inhibits inflammation and promotes autophagy in silica-induced pulmonary fibrosis through targeting TNFSF14 and PTBP1[J]. Chem Res Toxicol, 2019, 32(11): 2192-2203. DOI: 10.1021/acs.chemrestox.9b00194.
    [33]
    Wang X, Xu K, Yang X, et al. Upregulated miR-29c suppresses silica-induced lung fibrosis through the Wnt/β-catenin pathway in mice[J]. Hum Exp Toxicol, 2018, 37(9): 944-952. DOI: 10.1177/0960327117741750.
    [34]
    Wang X. Experimental study of miRNA200a regulating Wnt/β-catenin signaling pathway in silica-induced mouse lung epithelial cells[J]. China Medical Abstracts(Internal Medicine), 2018, 35(2): 14-14.
    [35]
    邓丽明, 周桂芳, 梁博萱, 等. miR-489调控PI3K/Akt信号通路促进矽肺诱导小鼠肺纤维化的作用[J]. 海南医学, 2021, 32(23): 2993-2997. DOI: 10.3969/j.issn.1003-6350.2021.23.001.

    Teng LM, Zhou GF, Liang BX, et al. Role of miR-489 in regulating PI3K/Akt signaling pathway in promoting silicosis-induced pulmonary fibrosis in mice[J]. Hainan Med J, 2021, 32(23): 2993-2997. DOI: 10.3969/j.issn.1003-6350.2021.23.001.
    [36]
    Pang X, Shi H, Chen X, et al. miRNA-34c-5p targets Fra-1 to inhibit pulmonary fibrosis induced by silica through p53 and PTEN/PI3K/Akt signaling pathway[J]. Environ Toxicol, 2022, 37(8): 2019-2032. DOI: 10.1002/tox.23547.
    [37]
    Han R, Ji X, Rong R, et al. MiR-449a regulates autophagy to inhibit silica-induced pulmonary fibrosis through targeting Bcl2[J]. J Mol Med, 2016, 94(11): 1267-1279. DOI: 10.1007/s00109-016-1441-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (247) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return