Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 28 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
HUANG Ting, LIU Jincheng, LI Huilin, WU Yiwen, YU Er, JI Kai, TANG Shaowen, ZHAO Yang, DAI Juncheng, YI Honggang. The application of the sum of single effects regression model for colocalization analysis in multi-omics data[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(1): 117-121. doi: 10.16462/j.cnki.zhjbkz.2024.01.019
Citation: HUANG Ting, LIU Jincheng, LI Huilin, WU Yiwen, YU Er, JI Kai, TANG Shaowen, ZHAO Yang, DAI Juncheng, YI Honggang. The application of the sum of single effects regression model for colocalization analysis in multi-omics data[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(1): 117-121. doi: 10.16462/j.cnki.zhjbkz.2024.01.019

The application of the sum of single effects regression model for colocalization analysis in multi-omics data

doi: 10.16462/j.cnki.zhjbkz.2024.01.019
Funds:

National Natural Science Foundation of China 81941020

College Student Innovation and Entrepreneurship Training Program 202210312151

More Information
  • Corresponding author: YI Honggang, E-mail: honggangyi@njmu.edu.cn
  • Received Date: 2022-12-15
  • Rev Recd Date: 2023-03-23
  • Available Online: 2024-02-05
  • Publish Date: 2024-01-10
  •   Objective  To explore the application of the sum of single effects (SuSiE) regression model for colocalization analysis with multi-omics data.  Methods  Taking the simulated data as an example, we introduced the basic principle of SuSiE regression model and the statistical analysis procedures using R software.  Results  The results showed that the SuSiE regression model could identify the shared casual variants as associated with traits through taking account the linkage disequilibrium (LD) between single nucleotide polymorphisms (SNPs). Despite the presence of multiple causal variants, the colocalization results were still stable.  Conclusions  Compared with those traditional approaches for colocalization, SuSiE regression model expands the applicability of the single causal variant hypothesis and it has higher computational efficiency, thus helping to detect multiple potential shared casual variants using multi-omics data.
  • loading
  • [1]
    Tam V, Patel N, Turcotte M, et al. Benefits and iimitations of genome-wide association studies[J]. Nat Rev Genet, 2019, 20(8): 467-484. DOI: 10.1038/s41576-019-0127-1.
    [2]
    Kia DA, Zhang D, Guelfi S, et al. Identification of candidate parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets[J]. JAMA Neurol, 2021, 78(4): 464-472. DOI: 10.1001/jamaneurol.2020.5257.
    [3]
    Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet[J]. PLoS Genet, 2014, 10(5): e1004383. DOI: 10.1371/journal.pgen.1004383.
    [4]
    Wallace C. A more accurate method for colocalisation analysis allowing for multiple causal variants[J]. PLoS Genet, 2021, 17(9): e1009440. DOI: 10.1371/journal.pgen.1009440.
    [5]
    Barbeira AN, Dickinson SP, Bonazzola R, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics[J]. Nat Commun, 2018, 9(1): 1825. DOI: 10.1038/s41467-018-03621-1.
    [6]
    Wang G, Sarkar A, Carbonetto P, et al. A simple new approach to variable selection in regression, with application to genetic fine mapping[J]. J R Stat Soc Series B Stat Methodol, 2020, 82(5): 1273-1300. DOI: 10.1111/rssb.12388.
    [7]
    Berisa T, Pickrell JK. Approximately independent linkage disequilibrium blocks in human populations[J]. Bioinformatics, 2016, 32(2): 283-285. DOI: 10.1093/bioinformatics/btv546.
    [8]
    Chung RH, Kang CY. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification[J]. Gigascience, 2019, 8(5): giz045. DOI: 10.1093/gigascience/giz045.
    [9]
    Wallace C. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses[J]. PLoS Genet, 2020, 16(4): e1008720. DOI: 10.1371/journal.pgen.1008720.
    [10]
    Lin JF, Zhou JW, Xu Y. Potential drug targets for multiple sclerosis identified through Mendelian randomization analysis[J]. Brain, 2023, 146(8): 3364-3372. DOI: 10.1093/brain/awad070.
    [11]
    Yuan MN, Wei LX, Zhou RS, et al. Four FCRL3 gene polymorphisms (FCRL3_3, _5, _6, _8) confer susceptibility to multiple sclerosis: results from a case-control study[J]. Mol Neurobiol, 2016, 53(3): 2029-2035. DOI: 10.1007/s12035-015-9149-7.
    [12]
    O'Connell P, Blake MK, Godbehere S, et al. SLAMF7 modulates B cells and adaptive immunity to regulate susceptibility to CNS autoimmunity[J]. J Neuroinflammation, 2022, 19(1): 241. DOI: 10.1186/s12974-022-02594-9.
    [13]
    Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease[J]. Nat Rev Genet, 2015, 16(4): 197-212. DOI: 10.1038/nrg3891.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (416) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return