Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 28 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHENG Yi, LI Houcheng, PENG Zihao, CAI Jing, YANG Jun, HE Na. Analysis of influencing factors of microbial aerosol concentration in centralized air conditioning and ventilation system of subway platforms[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(7): 798-807. doi: 10.16462/j.cnki.zhjbkz.2024.07.009
Citation: ZHENG Yi, LI Houcheng, PENG Zihao, CAI Jing, YANG Jun, HE Na. Analysis of influencing factors of microbial aerosol concentration in centralized air conditioning and ventilation system of subway platforms[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(7): 798-807. doi: 10.16462/j.cnki.zhjbkz.2024.07.009

Analysis of influencing factors of microbial aerosol concentration in centralized air conditioning and ventilation system of subway platforms

doi: 10.16462/j.cnki.zhjbkz.2024.07.009
ZHENG Yi and LI Houcheng contributed equally to this article
Funds:

Shanghai Public Health Key Discipline Construction Project GWV-10.1-XK16

Shentong Metro Research Project JS-KY21R011-1

More Information
  • Corresponding author: YANG Jun, E-mail: yangjun5618@126.com; HE Na, E-mail: nhe@fudan.edu.cn
  • Received Date: 2023-10-12
  • Rev Recd Date: 2024-02-28
  • Available Online: 2024-08-19
  • Publish Date: 2024-07-10
  •   Objective  To characterize the microbial aerosols in the centralized air conditioning and ventilation system of urban subway stations, and to explore the influencing factors of microbial aerosol concentration in the centralized air conditioning and ventilation system of subway stations in mega cities, and conduct analysis on fungal aerosol concentration and related influencing factors.  Methods  Applying random sampling strategy, this study selected 120 subway stations across 15 subway lines in a mega city. For each station, Andersen stage impactors were used to collect aerosol samples, covering 6 particle size segments (≥7.00 μm, 4.70- < 7.00 μm, 3.30- < 4.70 μm, 2.10- < 3.30 μm, 1.10- < 2.10 μm, 0.65- < 1.10 μm). The concentration of bacterial and fungal aerosols was detected using culture method. Spearman rank correlation analysis, Mann Whitney U test, and Kruskal Wallis test were conducted to identify the potential influencing factors of microbial aerosol concentration.  Results  The median concentrations (interquartile range, IQR) of bacterial and fungal aerosols in the centralized air conditioning and ventilation system were 163 (148) CFU/m3 and 346 (205) CFU/m3, respectively. The results of the Spearman rank correlation analysis indicated that the correlation between different influencing factors and microbial aerosol concentration varied. For instance, we found a significant positive correlation of temperature with total bacteria aerosol concentration (r=0.22, P < 0.001) and total fungal aerosol concentration (r=0.17, P < 0.001). Inhalable particulate matter (PM10) mass concentration was significantly and positively correlated with total bacterial aerosol concentration (r=0.10, P < 0.05); however, its correlation with total fungal aerosol concentration was weak and did not reach statistical significance (r=0.06, P > 0.05). The results of Spearman rank correlation analysis showed that factors such as station type, platform opening year, season, and meteorological conditions might significantly affect the microbial aerosol concentration of the station′s centralized air conditioning and ventilation system.  Conclusions  Temperature, relative humidity, PM10 mass concentration, cleaning interval, number of people passing through during sampling, station type, meteorological conditions may significantly affect the microbial aerosol concentration in the centralized air conditioning and ventilation system of subway stations. In the future, it is urgent to pay attention to these factors. Our findings may support the microbial risk prevention and control for subway stations.
  • loading
  • [1]
    Humbal C, Gautam S, Trivedi U. A review on recent progress in observations, and health effects of bioaerosols[J]. Environ Int, 2018, 118: 189-193. DOI: 10.1016/j.envint.2018.05.053.
    [2]
    王莹, 韩云平, 李琳. 卫生填埋场微生物气溶胶的逸散及潜在风险[J]. 微生物学通报, 2020, 47(1): 222-233. DOI: 10.13344/j.microbiol.china.

    Wang Y, Han YP, Li L. Evacuation and potential risks of microbial aerosols in sanitary landfills[J]. Microbiology Bulletin, 2020, 47(1): 222-233. DOI: 10.13344/j.microbiol.china.
    [3]
    沈雁翎, 李厚橙, 李仕祯, 等. 气溶胶微生物健康风险研究进展[J]. 上海预防医学, 2023, 35(3): 292-300. DOI: 10.19428/j.cnki.sjpm.2023.22431.

    Shen YL, Li HC, Li SZ, et al. Research progress on health risks of aerosol microorganisms[J]. Shanghai J Prev Med, 2023, 35(3): 292-300. DOI: 10.19428/j.cnki.sjpm.2023.22431.
    [4]
    Grydaki N, Colbeck I, Mendes SL, et al. Bioaerosols in the Athens metro: metagenetic insights into the PM10 microbiome in a naturally ventilated subway station[J]. Environ Int, 2021, 146: 106186. DOI: 10.1016/j.envint.2020.106186.
    [5]
    Kim KH, Kabir E, Jahan SA. Airborne bioaerosols and their impact on human health[J]. J Environ Sci, 2018, 67: 23-35. DOI: 10.1016/j.jes.2017.08.027.
    [6]
    Yan X, Qiu DZ, Zheng SK, et al. Distribution characteristics and noncarcinogenic risk assessment of culturable airborne bacteria and fungi during winter in Xinxiang, China[J]. Environ Sci Pollut Res, 2019, 26(36): 36698-36709. DOI: 10.1007/s11356-019-06720-8.
    [7]
    Wang Y, Qi J, Han C, et al. Microbial characteristics of culturable fungi and bacteria in aerosol particles of a coastal region[J]. Aerobiologia, 2020, 36(3): 1-19. DOI: 10.1007/s10453-020-09648-6.
    [8]
    中华人民共和国国家卫生健康委员会. 公共场所卫生检验方法第5部分: 集中空调通风系统: GB/T 18204.5-2013[S/OL]. 北京: 中华人民共和国国家卫生健康委员会, 2013: 1-6[2018-05-22]. http://www.nhc.gov.cn/wjw/pgw/201805/37352efeace747f0bba1d39d9a8354b7.shtml.

    National Health Commission of the People's Republic of China. Methods for hygiene inspection of public places - part 5: central air conditioning and ventilation systems: GB/T 18204.5-2013[S/OL]. Beijing: National Health Commission of the People's Republic of China, 2013: 1-6[2018-05-22]. http://www.nhc.gov.cn/wjw/pgw/201805/37352efeace747f0bba1d39d9a8354b7.shtml.
    [9]
    中国城市轨道交通协会年鉴编纂委员会. 中国城市轨道交通年鉴2023[M]. 上海: 上海书店出版社, 2023: 11.

    China Urban Rail Transit Association Yearbook Compilation Committee. China urban rail transit yearbook 2023[M]. Shanghai: Shanghai Bookstore Press, 2023: 11.
    [10]
    上海市疾病预防控制标准化计划委员会. 集中空调通风系统卫生管理规范: DB31/T 405-2021[S]. 上海: 上海市市场监督管理局, 2021: 6-8.

    Shanghai Standardization Planning Committee for Disease Prevention and Control. Hygiene management specification for central air conditioning and ventilation systems: DB31/T 405-2021[S]. Shanghai: Shanghai Municipal Administration for Market Regulation, 2021: 6-8.
    [11]
    Yang B, Yao HC, Wang FM. A review of ventilation and environmental control of underground spaces[J]. Energies, 2022, 15(2): 409. DOI: 10.3390/EN15020409.
    [12]
    Li A, Liu Z, Liu Y, et al. Experimental study on microorganism ecological distribution and contamination mechanism in supply air ducts[J]. Energ Buildings, 2012, 47: 497-505. DOI: 10.1016/j.enbuild.2011.12.025.
    [13]
    Yan D, Zhang T, Su J, et al. Structural variation in the bacterial community associated with airborne particulate matter in Beijing, China, during hazy and nonhazy days[J]. Appl Environ Microbiol, 2018, 84(9): 13. DOI: 10.1128/AEM.00004-18.
    [14]
    Zhao L, Wang J, Gao HO, et al. Evaluation of particulate matter concentration in Shanghai's metro system and strategy for improvement[J]. Transport Res D-Tr E, 2017, 53: 115-127. DOI: 10.1016/j.trd.2017.04.010.
    [15]
    曾雪娇, 杜喜浩, 张佳, 等. 上海市轨道交通地下车站集中空调通风系统的卫生状况[J]. 环境与职业医学, 2018, 35(4): 286-290. DOI: 10.13213/j.cnki.jeom.2018.17572.

    Zeng XJ, Du XH, Zhang J, et al. Hygiene status of centralized air conditioning and ventilation systems in underground subway stations in Shanghai[J]. Journal of Environmental and Occupational Medicine, 2018, 35(4): 286-290. DOI: 10.13213/j.cnki.jeom.2018.17572.
    [16]
    刘立. 臭氧活性炭深度处理工艺应用研究[J]. 绿色科技, 2020, (16): 78-79. DOI: 10.16663/j.cnki.lskj.2020.16.025.

    Liu L. Research on the application of ozone activated carbon deep treatment process[J]. Green Technology, 2020, (16): 78-79. DOI: 10.16663/j.cnki.lskj.2020.16.025.
    [17]
    Tellier R, Li Y, Cowling B J, et al. Recognition of aerosol transmission of infectious agents: a commentary[J]. BMC Infec Dis, 2019, 19(1): 101. DOI: 10.1186/s12879-019-3707-y.
    [18]
    Port JR, Yinda CK, Avanzato VA, et al. Increased small particle aerosol transmission of B. 1.1.7 compared with SARS-CoV-2 lineage A in vivo[J]. Nat Microbiol, 2022, 7(2): 213-223. DOI: 10.1038/s41564-021-01047-y.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (59) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return