Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 28 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
WANG Xingbin, ZHAO Changming, HUANG Qiuli, WANG Ling, ZHANG Yaxin, YANG Dejie, WANG Zhaofen. Mendelian randomization study on the causal relationship between interleukins and pulmonary tuberculosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(7): 827-832. doi: 10.16462/j.cnki.zhjbkz.2024.07.013
Citation: WANG Xingbin, ZHAO Changming, HUANG Qiuli, WANG Ling, ZHANG Yaxin, YANG Dejie, WANG Zhaofen. Mendelian randomization study on the causal relationship between interleukins and pulmonary tuberculosis[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(7): 827-832. doi: 10.16462/j.cnki.zhjbkz.2024.07.013

Mendelian randomization study on the causal relationship between interleukins and pulmonary tuberculosis

doi: 10.16462/j.cnki.zhjbkz.2024.07.013
Funds:

Natural Science Foundation of Qinghai Province 2020-ZJ-929

More Information
  • Corresponding author: WANG Zhaofen, E-mail: kristy538@163.com
  • Received Date: 2023-10-07
  • Rev Recd Date: 2024-04-19
  • Available Online: 2024-08-19
  • Publish Date: 2024-07-10
  •   Objective  This study aims to determine the causal association between multiple interleukin (IL) levels and the risk of tuberculosis by using a two-sample Mendelian randomization (MR) method.  Methods  The data on interleukins and tuberculosis were obtained from the the pooled data of three published genome-wide association studies(GWAS) accomplished in European populations. According to preset thresholds and requirements of linkage disequilibrium, the single nucleotide polymorphism(SNP) loci closely related to a variety of interleukins were extracted from the summarized data as instrumental variables, the causal effect of nine interleukin levels on the risk of tuberculosis was assessed by using inverse variance weighting (IVW), mr-egger regression, and weighted median estimation. At the same time, the horizontal pleiotropy and heterogeneity were tested to ensure the stability of the results, and the directional test was used to check reverse causality effect.  Results  According to the IVW results, there were no causal relationships among interleukins of IL-1RA, IL-2RA, IL-6, IL-6RA, IL-8, IL-17, IL-18 and pulmonary tuberculosis (P>0.05). Higher levels of IL-16 were correlated with an increased risk of tuberculosis (OR=1.210, 95% CI: 1.032-1.419, P=0.019, Padjusted=0.086). In contrast, rised IL-27 levels suggested a lower risk of tuberculosis (OR=0.875, 95% CI: 0.788-0.97, P=0.011, Padjusted=0.086). These findings remained robust and consistent across all three MR testing methods with no reverse causality.  Conclusions  No causal relationship has been found among interleukins of IL-1RA, IL-2RA, IL-6, IL-6RA, IL-8, IL-17, IL-18 and pulmonary tuberculosis. Higher IL-16 levels are linked to an increased risk of developing tuberculosis, while the increase in IL-27 levels is associated with a decreased risk of pulmonary tuberculosis.
  • loading
  • [1]
    Petersen E, Al-abri S, Chakaya J, et al. World TB Day 2022: revamping and reshaping global TB control programs by advancing lessons learnt from the COVID-19 pandemic[J]. Int J Infect Dis, 2022, 124: S1-S3. DOI: 10.1016/j.ijid.2022.02.057.
    [2]
    Kumar NP, Moideen K, Banurekha VV, et al. Plasma proinflammatory cytokines are markers of disease severity and bacterial burden in pulmonary tuberculosis[J]. Open Forum Infect Dis, 2019, 6(7): ofz257. DOI: 10.1093/ofid/ofz257.
    [3]
    Moideen K, Kumar NP, Bethunaickan R, et al. Heightened systemic levels of anti-inflammatory cytokines in pulmonary tuberculosis and alterations following anti-tuberculosis treatment[J]. Cytokine, 2020, 127: 154929. DOI: 10.1016/j.cyto.2019.154929.
    [4]
    和思敏, 张雨, 彭刘庆, 等. 倾向性评分与孟德尔随机化国内研究现状[J]. 中华疾病控制杂志, 2022, 26(3): 325-330. DOI: 10.16462/j.cnki.zhjbkz.2022.03.014.

    He SM, Zhang Y, Peng LQ, et al. Research progress of propensity score and Mendelian randomization in China[J]. Chin J Dis Control Prev, 2022, 26(3): 325-330. DOI: 10.16462/j.cnki.zhjbkz.2022.03.014.
    [5]
    Folkersen L, Gustafsson S, Wang Q, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30 931 individuals[J]. Nat Metab, 2020, 2(10): 1135-1148. DOI: 10.1038/s42255-020-00287-2.
    [6]
    Ahola-olli AV, Würtz P, Havulinna AS, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors[J]. Am J Hum Genet, 2017, 100(1): 40-50. DOI: 10.1016/j.ajhg.2016.11.007.
    [7]
    李文超, 李洪凯, 刘新辉, 等. 基于孟德尔随机化探索臀围与2型糖尿病的因果关系[J]. 中华疾病控制杂志, 2020, 24(1): 9-13, 19. DOI: 10.16462/j.cnki.zhjbkz.2020.01.003.

    Li WC, Li HK, Liu XH, et al. Exploring the causal relationship between hip circumference and type 2 diabetes based on mende lian randomization[J]. Chin J Dis Control Prev, 2020, 24(1): 9-13, 19. DOI: 10.16462/j.cnki.zhjbkz.2020.01.003.
    [8]
    Feng R, Lu M, Xu J, et al. Pulmonary embolism and 529 human blood metabolites: genetic correlation and two-sample Mendelian randomization study[J]. BMC Genomic Data, 2022, 23(1): 69. DOI: 10.1186/s12863-022-01082-6.
    [9]
    Burgess S, Butterworth A, Thompson S G. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665. DOI: 10.1002/gepi.21758.
    [10]
    Bowden J, Davey SG, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. DOI: 10.1093/ije/dyv080.
    [11]
    Bowden J, Davey SG, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. DOI: 10.1002/gepi.21965.
    [12]
    Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. DOI: 10.1007/s10654-017-0255-x.
    [13]
    Cohen JF, Chalumeau M, Cohen R, et al. Cochran's Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy[J]. J Clini Epidemiol, 2015, 68(3): 299-306. DOI: 10.1016/j.jclinepi.2014.09.005.
    [14]
    Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. DOI: 10.1038/s41588-018-0099-7.
    [15]
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing[J]. J R Stat Soci, 1995, 57(1): 289-300. DOI: 10.1111/j.2517-6161.1995.tb02031.x.
    [16]
    Mannie MD, Abbott DJ, Blanchfield L. Cytokine-neuroantigen fusion proteins represent a novel therapeutic approach for EAE (48.10)[J]. J Immunol, 2009, 182(Sup 1): 48.10. DOI: 10.4049/jimmunol.182.Supp.48.10.
    [17]
    Qin XJ. Interleukin-16 in tuberculous and malignant pleural effusions[J]. Eur Respir J, 2005, 25(4): 605-611. DOI: 10.1183/09031936.05.00090804.
    [18]
    Su H, Weng S, Luo L, et al. Mycobacterium tuberculosis hijacks host macrophages-derived interleukin 16 to block phagolysosome maturation for enhancing intracellular growth: IL-16 enhances Mtb intracellular survival[J]. Emerg Microbes Infec, 2024: 2322663. DOI: 10.1080/22221751.2024.2322663.
    [19]
    Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells[J]. Immunity, 2002, 16(6): 779-790. DOI: 10.1016/S1074-7613(02)00324-2.
    [20]
    Remoli ME, Gafa V, Giacomini E, et al. IFN-β modulates the response to TLR stimulation in human DC: involvement of IFN regulatory factor-1 (IRF-1) in IL-27 gene expression[J]. Eur J Immunol, 2007, 37(12): 3499-3508. DOI: 10.1002/eji.200737566.
    [21]
    Pirhonen J, Sirén J, Julkunen I, et al. IFN-α regulates toll-like receptor-mediated IL-27 gene expression in human macrophages[J]. J Leukocyte Biol, 2007, 82(5): 1185-1192. DOI: 10.1189/jlb.0307157.
    [22]
    Moideen K, Kumar NP, Bethunaickan R, et al. Heightened systemic levels of anti-inflammatory cytokines in pulmonary tuberculosis and alterations following anti-tuberculosis treatment[J]. Cytokine, 2020, 127: 154929. DOI: 10.1016/j.cyto.2019.154929.
    [23]
    Skouras VS, Magkouta SF, Psallidas I, et al. Interleukin-27 improves the ability of adenosine deaminase to rule out tuberculous pleural effusion regardless of pleural tuberculosis prevalence[J]. Infect Dis, 2015, 47(7): 477-483. DOI: 10.3109/23744235.2015.1019919.
    [24]
    Torrado E, Fountain JJ, Liao M, et al. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection[J]. J Exp Med, 2015, 212(9): 1449-1463. DOI: 10.1084/jem.20141520.
    [25]
    Erdmann H, Behrends J, Ritter K, et al. The increased protection and pathology in Mycobacterium tuberculosis-infected IL-27R-alpha-deficient mice is supported by IL-17A and is associated with the IL-17A-induced expansion of multifunctional T cells[J]. Mucosal Immunol, 2018, 11(4): 1168-1180. DOI: 10.1038/s41385-018-0026-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (64) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return