Citation: | YANG Yutong, TIAN Qinghua, AN Qi, HAO Jianguang, WANG Jianru, WU Jiao, LI Yichun, LI Yang, WANG Qingyao, LI Yuxing, LEI Lijian, LUO Mingzhong. A neural network risk prediction model of coal workers′ pneumoconiosis-a hospital-based case-control study[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(8): 961-968. doi: 10.16462/j.cnki.zhjbkz.2024.08.015 |
[1] |
Castranova V, Vallyathan V. Silicosis and coal workers′ pneumoconiosis [J]. Environ Health Perspect, 2000, 108 Suppl 4(Suppl 4): 675-684. DOI: 10.1289/ehp.00108s4675.
|
[2] |
Leung CC, Yu IT, Chen W. Silicosis [J]. Lancet, 2012, 379(9830): 2008-2018. DOI: 10.1016/s0140-6736(12)60235-9.
|
[3] |
Weeks JL. The Mine Safety and Health Administration′s criterion threshold value policy increases miners′ risk of pneumoconiosis [J]. Am J Ind Med, 2006, 49(6): 492-498. DOI: 10.1002/ajim.20318.
|
[4] |
Mukherjee AK, Bhattacharya SK, Saiyed HN. Assessment of respirable dust and its free silica contents in different Indian coalmines[J]. Ind Health, 2005, 43(2): 277-284. DOI: 10.2486/indhealth.43.277.
|
[5] |
Xi ZL, Jiang MM, Yang JJ, et al. Experimental study on advantages of foam-Sol in coal dust control[J]. Process Saf Environ Prot, 2014, 92(6): 637-644. DOI: 10.1016/j.psep.2013.11.004.
|
[6] |
Qi XM, Luo Y, Song MY, et al. Pneumoconiosis: current status and future prospects[J]. Chin Med J (Engl), 2021, 134(8): 898-907. DOI: 10.1097/cm9.0000000000001461.
|
[7] |
Ge XY, Cui K, Ma HL, et al. Cost-effectiveness of comprehensive preventive measures for coal workers′ pneumoconiosis in China [J]. BMC Health Serv Res, 2022, 22(1): 266. DOI: 10.1186/s12913-022-07654-7.
|
[8] |
Zhang L, Zhu L, Li ZH, et al. Analysis on the disease burden and its impact factors of coal worker′s pneumoconiosis inpatients [J]. J Peking Univ Health Sci, 2014, 46(2): 226-231.
|
[9] |
Hao C, Jin N, Qiu C, et al. Balanced convolutional neural networks for pneumoconiosis detection[J]. Int J Environ Res Public Health, 2021, 18(17): 9091. DOI: 10.3390/ijerph18179091.
|
[10] |
Moons KGM, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker [J]. Heart, 2012, 98(9): 683-690. DOI: 10.1136/heartjnl-2011-301246.
|
[11] |
Zhang Y, Zhang Y, Liu B, et al. Prediction of the length of service at the onset of coal workers′ pneumoconiosis based on neural network [J]. Arch Environ Occup Health, 2020, 75(4): 242-250. DOI: 10.1080/19338244.2019.1644278.
|
[12] |
Knight D, Ehrlich R, Cois A, et al. Predictors of silicosis and variation in prevalence across mines among employed gold miners in South Africa[J]. BMC Public Health, 2020, 20(1): 829. DOI: 10.1186/s12889-020-08876-2.
|
[13] |
Han B, Liu H, Zhai G, et al. Estimates and predictions of coal workers′ pneumoconiosis cases among redeployed coal workers of the Fuxin mining industry group in China: a historical cohort study [J]. PLoS One, 2016, 11(2): e0148179. DOI: 10.1371/journal.pone.0148179.
|
[14] |
Zhou D, Zhu D, Li N, et al. Exploration of three incidence trend prediction models based on the number of diagnosed pneumoconiosis cases in China from 2000 to 2019 [J]. J Occup Environ Med, 2021, 63(7): e440-e444. DOI: 10.1097/jom.0000000000002258.
|
[15] |
王嵘冰, 徐红艳, 李波, 等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4): 31-35. DOI: 10.3969/j.issn.1673-629X.2018.04.007.
Wang RB, Xu HY, Li B, et al. Research on method of determining hidden layer nodes in BP neural network[J]. Comput Technol Dev, 2018, 28(4): 31-35. DOI: 10.3969/j.issn.1673-629X.2018.04.007.
|
[16] |
Li JM, Dong X, Ruan SM, et al. A parallel integrated learning technique of improved particle swarm optimization and BP neural network and its application [J]. Sci Rep, 2022, 12: 19325. DOI: 10.1038/s41598-022-21463-2.
|
[17] |
Shao F, Huang Q, Wang C, et al. Artificial neural networking model for the prediction of early occlusion of bilateral plastic stent placement for inoperable hilar cholangiocarcinoma [J]. Surg Laparosc Endosc Percutan Tech, 2018, 28(2): e54-e58. DOI: 10.1097/sle.0000000000000502.
|
[18] |
Liang Y, Li Q, Chen P, et al. Comparative study of back propagation artificial neural networks and logistic regression model in predicting poor prognosis after acute ischemic stroke [J]. Open Med (Wars), 2019, 14: 324-330. DOI: 10.1515/med-2019-0030.
|
[19] |
Wu JH, Wang XH, Guo XL, et al. Forecasting incidence seniority of coal workers′ pneumoconiosis based on BP neural network[M]. Lecture Notes in Electrical Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 559-564. DOI: 10.1007/978-3-642-35440-3_73.
|
[20] |
Zhang HY, Zou WM, Wu CR, et al. Influencing factors of pulmonary dysfunction in coal worker′s pneumoconiosis[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2007, 25(1): 11-14.
|
[21] |
Tong Y, Kong YY, Bian H, et al. Survival and disease burden trend analysis of occupational pneumoconiosis from 1963 to 2020 in Shizuishan City[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2022, 40(5): 341-347. DOI: 10.3760/cma.j.cn121094-20210906-00439.
|
[22] |
Han F, Chen YQ, Wu B, et al. Occupational health risk assessment of coal dust in coal industry chain[J]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2018, 36(4): 291-294. DOI: 10.3760/cma.j.issn.1001-9391.2018.04.015.
|
[23] |
Takigawa T, Kishimoto T, Nabe M, et al. The current state of workers′ pneumoconiosis in relationship to dusty working environments in Okayama Prefecture, Japan [J]. Acta Med Okayama, 2002, 56(6): 303-308. DOI: 10.18926/amo/31694.
|
[24] |
Perret JL, Plush B, Lachapelle P, et al. Coal mine dust lung disease in the modern era[J]. Respirology, 2017, 22(4): 662-670. DOI: 10.1111/resp.13034.
|