Citation: | WANG Ping, ZHANG Le, HONG Xiaorui, ZHU Suling, ZHAO Xuejing. Resampling classification model for predicting blood glucose control in middle-aged and elderly diabetic patients in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(9): 1005-1009. doi: 10.16462/j.cnki.zhjbkz.2024.09.003 |
[1] |
Chawla NV, Japkowicz N, Kolcx AR, et al. Session details: special issue on learning from imbalanced datasets[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 1-6. DOI: 10.1145/3262579.
|
[2] |
Cateni S, Colla V, Vannucci M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems[J]. Neurocomputing, 2014, 135(5): 32-41. DOI: 10.1016/j.neucom.2013.05.059.
|
[3] |
武海滨, 李康, 杨丽, 等. 非平衡分类技术在人群糖尿病疾病风险预测模型中的应用[J]. 中国卫生统计, 2019, 36(4): 502-506.
Wu HB, Li K, Yang L, et al. Application of imbalance classification techniques in population disease diabetes risk prediction model[J]. Chinese Journal of Health Statistics, 2019, 36(4): 502-506.
|
[4] |
方德刚, 郑桃林, 杨柳, 等. 长沙地区老年2型糖尿病患者血糖控制情况及其影响因素[J]. 中国卫生工程学, 2021, 20(5): 766-767. DOI: 10.19937/j.issn.1671-4199.2021.05.021.
Fang DG, Zheng TL, Yang L, et al. Blood glucose control and its influencing factors in elderly patients with type 2 diabetes in Changsha[J]. Chinese Journal of Public Health Engineering, 2021, 20(5): 766-767. DOI: 10.19937/j.issn.1671-4199.2021.05.021.
|
[5] |
Lozovey NR, Lamback EB, Mota RB, et al. Glycemic control rate in type 2 diabetes mellitus patients at a public referral hospital in Rio de Janeiro, Brazil: demographic and clinical factors[J]. J Endocrinol Metab, 2017, 7(2): 61-67. DOI: 10.14740/jem390w.
|
[6] |
周小琦, 李芳, 刘新会, 等. 不同性别老年糖尿病患者血糖控制情况及影响因素分析[J]. 公共卫生与预防医学, 2022, 33(6): 80-85. DOI: 10.3969/j.issn.1006-2483.2022.06.019.
Zhou XQ, Li F, Liu XH, et al. Glycemic control and influencing factors among male and female elderly diabetic patients[J]. J Pub Heal Prev Med, 2022, 33(6): 80-85. DOI: 10.3969/j.issn.1006-2483.2022.06.019.
|
[7] |
李巧娥, 胡晓斌, 车鑫垚, 等. 甘肃省15岁及以上糖尿病患者血糖管理状况及影响因素分析[J]. 公共卫生与预防医学, 2022, 33(3): 63-67. DOI: 10.3969/j.issn.1006-2483.2022.03.014.
Li QE, Hu XB, Che XY, et al. Current situation and influencing factors of blood glucose management in diabetic patients aged 15 and above in Gansu[J]. J Pub Heal Prev Med, 2022, 33(3): 63-67. DOI: 10.3969/j.issn.1006-2483.2022.03.014.
|
[8] |
张乐, 王如意, 杨慧, 等. 重采样技术在中老年居民糖尿病不平衡数据分类中的应用[J]. 现代预防医学, 2023, 50(7): 1339-1344. DOI: 10.20043/j.cnki.MPM.202210439.
Zhang L, Wang RY, Yang H, et al. Application of resampling technique in the classification of imbalanced diabetes data in middle-aged and elderly residents[J]. Modern Preventive Medicine, 2023, 50(7): 1339-1344. DOI: 10.20043/j.cnki.MPM.202210439.
|
[9] |
Manal A, Mouaz A M, Steven K, et al. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford exercIse testing (FIT) project[J]. PLoS ONE, 2017, 12(7): e0179805. DOI: 10.1371/journal.pone.0179805.
|
[10] |
周玉, 孙红玉, 房倩, 等. 不平衡数据集分类方法研究综述[J]. 计算机应用研究, 2022, 39(6): 1615-1621. DOI: 10.19734/j.issn.1001-3695.2021.10.0590.
Zhou Y, Sun HY, Fang Q, et al. Review of imbalanced data classification methods[J]. Application Researchof Computers, 2022, 39(6): 1615-1621. DOI: 10.19734/j.issn.1001-3695.2021.10.0590.
|