Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 28 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
WANG Ping, ZHANG Le, HONG Xiaorui, ZHU Suling, ZHAO Xuejing. Resampling classification model for predicting blood glucose control in middle-aged and elderly diabetic patients in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(9): 1005-1009. doi: 10.16462/j.cnki.zhjbkz.2024.09.003
Citation: WANG Ping, ZHANG Le, HONG Xiaorui, ZHU Suling, ZHAO Xuejing. Resampling classification model for predicting blood glucose control in middle-aged and elderly diabetic patients in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(9): 1005-1009. doi: 10.16462/j.cnki.zhjbkz.2024.09.003

Resampling classification model for predicting blood glucose control in middle-aged and elderly diabetic patients in China

doi: 10.16462/j.cnki.zhjbkz.2024.09.003
WANG Ping and ZHANG Le contributed equally to this article
Funds:

National Natural Science Foundation of China 11971214

More Information
  • Corresponding author: ZHU Suling, E-mail: zhusl@lzu.edu.cn
  • Received Date: 2023-11-07
  • Rev Recd Date: 2024-05-15
  • Available Online: 2024-10-24
  • Publish Date: 2024-09-10
  •   Objective  This study aims to improve the prediction performance of blood glucose control classification models for diabetic patients by employing resampling algorithms.  Methods  Blood glucose control data of diabetic patients in the China health and retirement longitudinal study (CHARLS) database were resampled. We compared the classification performance of logistic regression (LR), support vector machines (SVM), and random forests (RF) before and after resampling. We utilized stratified 5-fold cross-validation and area under curve (AUC) to determine the optimal parameters of the models. The performance of the classification models before and after resampling was evaluted using metrics such as accuracy, sensitivity, specificity, precision, geometric mean (G-mean), F1 score, and AUC.  Results  All three resampling algorithms, including ADASYN, synthetic minority over-sampling technique and edited nearest neighbors (SMOTE-ENN), and synthetic minority over-sampling technique tomek (SMOTE-Tomek), enhanced the prediction performance of three classification models when dealing with imbalanced blood glucose control data in diabetic patients. These algorithms exhibited varying degrees of improvement in AUC values, with adaptive synthetic sampling (ADASYN) increasing the AUC value of the logistic classification model by 2.13%, SMOTE-ENN by 3.05%, and SMOTE-Tomek by 2.13%, respectively.  Conclusions  ADASYN, SMOTE-ENN, and SMOTE-Tomek can better deal with the imbalanced blood glucose control data in diabetic patients and improve the performance of blood glucose control classification models.
  • loading
  • [1]
    Chawla NV, Japkowicz N, Kolcx AR, et al. Session details: special issue on learning from imbalanced datasets[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 1-6. DOI: 10.1145/3262579.
    [2]
    Cateni S, Colla V, Vannucci M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems[J]. Neurocomputing, 2014, 135(5): 32-41. DOI: 10.1016/j.neucom.2013.05.059.
    [3]
    武海滨, 李康, 杨丽, 等. 非平衡分类技术在人群糖尿病疾病风险预测模型中的应用[J]. 中国卫生统计, 2019, 36(4): 502-506.

    Wu HB, Li K, Yang L, et al. Application of imbalance classification techniques in population disease diabetes risk prediction model[J]. Chinese Journal of Health Statistics, 2019, 36(4): 502-506.
    [4]
    方德刚, 郑桃林, 杨柳, 等. 长沙地区老年2型糖尿病患者血糖控制情况及其影响因素[J]. 中国卫生工程学, 2021, 20(5): 766-767. DOI: 10.19937/j.issn.1671-4199.2021.05.021.

    Fang DG, Zheng TL, Yang L, et al. Blood glucose control and its influencing factors in elderly patients with type 2 diabetes in Changsha[J]. Chinese Journal of Public Health Engineering, 2021, 20(5): 766-767. DOI: 10.19937/j.issn.1671-4199.2021.05.021.
    [5]
    Lozovey NR, Lamback EB, Mota RB, et al. Glycemic control rate in type 2 diabetes mellitus patients at a public referral hospital in Rio de Janeiro, Brazil: demographic and clinical factors[J]. J Endocrinol Metab, 2017, 7(2): 61-67. DOI: 10.14740/jem390w.
    [6]
    周小琦, 李芳, 刘新会, 等. 不同性别老年糖尿病患者血糖控制情况及影响因素分析[J]. 公共卫生与预防医学, 2022, 33(6): 80-85. DOI: 10.3969/j.issn.1006-2483.2022.06.019.

    Zhou XQ, Li F, Liu XH, et al. Glycemic control and influencing factors among male and female elderly diabetic patients[J]. J Pub Heal Prev Med, 2022, 33(6): 80-85. DOI: 10.3969/j.issn.1006-2483.2022.06.019.
    [7]
    李巧娥, 胡晓斌, 车鑫垚, 等. 甘肃省15岁及以上糖尿病患者血糖管理状况及影响因素分析[J]. 公共卫生与预防医学, 2022, 33(3): 63-67. DOI: 10.3969/j.issn.1006-2483.2022.03.014.

    Li QE, Hu XB, Che XY, et al. Current situation and influencing factors of blood glucose management in diabetic patients aged 15 and above in Gansu[J]. J Pub Heal Prev Med, 2022, 33(3): 63-67. DOI: 10.3969/j.issn.1006-2483.2022.03.014.
    [8]
    张乐, 王如意, 杨慧, 等. 重采样技术在中老年居民糖尿病不平衡数据分类中的应用[J]. 现代预防医学, 2023, 50(7): 1339-1344. DOI: 10.20043/j.cnki.MPM.202210439.

    Zhang L, Wang RY, Yang H, et al. Application of resampling technique in the classification of imbalanced diabetes data in middle-aged and elderly residents[J]. Modern Preventive Medicine, 2023, 50(7): 1339-1344. DOI: 10.20043/j.cnki.MPM.202210439.
    [9]
    Manal A, Mouaz A M, Steven K, et al. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry Ford exercIse testing (FIT) project[J]. PLoS ONE, 2017, 12(7): e0179805. DOI: 10.1371/journal.pone.0179805.
    [10]
    周玉, 孙红玉, 房倩, 等. 不平衡数据集分类方法研究综述[J]. 计算机应用研究, 2022, 39(6): 1615-1621. DOI: 10.19734/j.issn.1001-3695.2021.10.0590.

    Zhou Y, Sun HY, Fang Q, et al. Review of imbalanced data classification methods[J]. Application Researchof Computers, 2022, 39(6): 1615-1621. DOI: 10.19734/j.issn.1001-3695.2021.10.0590.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (112) PDF downloads(158) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return