Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 28 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
LIU Ying, LIU Jiatong, WANG Jinxia, HU Yong, DONG Xuehao, WANG Faxuan, ZHANG Yajuan. Interactive effects of oxidant air pollutants and temperature on disease mortality in a region of China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(9): 1043-1052. doi: 10.16462/j.cnki.zhjbkz.2024.09.009
Citation: LIU Ying, LIU Jiatong, WANG Jinxia, HU Yong, DONG Xuehao, WANG Faxuan, ZHANG Yajuan. Interactive effects of oxidant air pollutants and temperature on disease mortality in a region of China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(9): 1043-1052. doi: 10.16462/j.cnki.zhjbkz.2024.09.009

Interactive effects of oxidant air pollutants and temperature on disease mortality in a region of China

doi: 10.16462/j.cnki.zhjbkz.2024.09.009
Funds:

Ningxia Natural Science Foundation Project 2022AAC03142

More Information
  • Corresponding author: ZHANG Yajuan, E-mail: zhyj830515@126.com
  • Received Date: 2023-12-12
  • Rev Recd Date: 2024-05-17
  • Available Online: 2024-10-24
  • Publish Date: 2024-09-10
  •   Objective   To explore the individual and interactive effects of oxidant air pollutants and temperature on mortality from respiratory and circulatory diseases in a defined Chinese region.   Methods   Using information from 2014 to 2018 in a Chinese region, including 188 039 death cases, air pollutant concentrations, and meteorological records. A Poisson generalized additive model (GAM) and a distributed lag nonlinear model (DLNM) were applied to assess the impacts of atmospheric oxidative pollutants and temperature on mortality form respiratory and circulatory diseases. And the interactions between temperature and pollutants were evaluated using a bivariate response surface model and stratification method.   Results   For each 10 μg/m3 increase in O3, NO2, and Ox, the maximum cumulative excess risks of death from circulatory diseases were 0.82% (95% CI: 0.30%-1.34%), 1.58% (95% CI: 0.28 %-2.90 %) and 1.11% (95% CI: 0.51%-1.72%), respectively. Corresponding values for respiratory diseases were 0.53% (95%CI: 0.31%-1.37%), 2.66% (95% CI: 1.07%-4.27%) and 1.22% (95% CI: 0.22%-2.23%). The difference between the effects of high and low temperature on mortality of the two diseases was large, with an immediate effect of high temperature and a lagging effect of low temperature. The interaction effect and direction were evaluted using the relative excess risk due to interaction(RERI). Interaction studies showed that there was a synergistic amplification of the risk of death from circulatory diseases in the population by high temperature with high concentrations of NO2 (RERI=0.118, 95% CI: 0.031-0.206). And low temperature with high concentrations of O3 (RERI=0.127, 95% CI: 0.104-0.150), and Ox (RERI=0.025, 95% CI: 0.002-0.049) had a synergistic amplification effect on the risk of death from respiratory diseases in the population.   Conclusions   High temperature, low temperature and atmospheric oxidative pollutants (O3, NO2 and Ox) all increase the risk of death from circulatory and respiratory diseases in the population. There is a synergistic amplification of the risk of death from circulatory and respiratory diseases in the population by high temperature and high concentrations of NO2 and low temperature and high concentrations of O3 and Ox, respectively.
  • loading
  • [1]
    Goshua A, Akdis CA, Nadeau KC. World Health Organization global air quality guideline recommendations: executive summary[J]. Allergy, 2022, 77(7): 1955-1960. DOI: 10.1111/all.15224.
    [2]
    World Health Organization. Ambient (outdoor) air pollution[EB/OL]. (2022-12-19)[2023-01-19]. https://www.who.int/en/news-room/factsheets/detail/ambient-(outdoor)-air-quality-and-health.
    [3]
    Liu C, Chen R, Sera F, et al. Ambient particulate air pollution and daily mortality in 652 cities[J]. N Engl J Med, 2019, 381(8): 705-715. DOI: 10.1056/NEJMoa1817364.
    [4]
    Xu JX, Geng WF, Geng XY, et al. Study on the association between ambient air pollution and daily cardiovascular death in Hefei, China[J]. Environ Sci Pollut Res Int, 2020, 27(1): 547-561. DOI: 10.1007/s11356-019-06867-4.
    [5]
    Samadi MT, Shakerkhatibi M, Poorolajal J, et al. Association of long term exposure to outdoor volatile organic compounds (BTXS) with pro-inflammatory biomarkers and hematologic parameters in urban adults: a cross-sectional study in Tabriz, Iran[J]. Ecotoxicol Environ Saf, 2019, 180: 152-159. DOI: 10.1016/j.ecoenv.2019.05.008.
    [6]
    中华人民共和国生态环境部. 2021中国生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2022: 9.

    Ministry of Ecology and Environment of the People's Republic of China. 2021 China ecological and environmental status bulletin[R]. Beijing: Ministry of Ecology and Environment of the People's Republic of China, 2022: 9.
    [7]
    中华人民共和国生态环境部. 2019中国生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2020: 9.

    Ministry of Ecology and Environment of the People's Republic of China. 2019 China ecological and environmental status bulletin[R]. Beijing: Ministry of Ecology and Environment of the People's Republic of China, 2020: 9.
    [8]
    Chen RJ, Yin P, Wang LJ, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities[J]. BMJ, 2018, 363: k4306. DOI: 10.1136/bmj.k4306.
    [9]
    Silveira IH, Oliveira BFA, Cortes TR, et al. The effect of ambient temperature on cardiovascular mortality in 27 Brazilian cities[J]. Sci Total Environ, 2019, 691: 996-1004. DOI: 10.1016/j.scitotenv.2019.06.493.
    [10]
    Yang CY, Li HC, Chen RJ, et al. Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide[J]. Environ Res Lett, 2016, 11(7): 074014. DOI: 10.1088/1748-9326/11/7/074014.
    [11]
    Williams ML, Atkinson RW, Anderson HR, et al. Associations between daily mortality in London and combined oxidant capacity, ozone and nitrogen dioxide[J]. Air Qual Atmos Health, 2014, 7(4): 407-414. DOI: 10.1007/s11869-014-0249-8.
    [12]
    Reid EC, Snowden MJ, Kontgis C, et al. Atmospheric ozone epidemiological studies the role of heat related mortality[J]. J Environ Occup Med, 2013, 30(4): 316-319. DOI: 10.13213/j.cnki.jeom.2013.04.021.
    [13]
    叶伟鹏, 刘苗苗, 毕军. 中国臭氧短期暴露与人群死亡之间关系的Meta分析研究[J]. 环境科学学报, 2020, 40(7): 2644-2651. DOI: 10.13671/j.hjkxxb.2020.0146.

    Ye WP, Liu MM, Bi J. Meta-analysis of the associations between short-term ozone exposure and human mortality in China[J]. Acta Sci Circumstantiae, 2020, 40(7): 2644-2651. DOI: 10.13671/j.hjkxxb.2020.0146.
    [14]
    谢昀霏, 宋晓明, 方嘉堃, 等. 广州市氧化性污染物与气温对居民心脑血管疾病死亡风险的交互作用[J]. 环境与职业医学, 2021, 38(11): 1199-1206. DOI: 10.13213/j.cnki.jeom.2021.21188.

    Xie YF, Song XM, Fang JK, et al. Interaction between oxidant pollutants and ambient temperature on cardio-cerebrovascular mortality risks in Guangzhou, China[J]. J Environ Occup Med, 2021, 38(11): 1199-1206. DOI: 10.13213/j.cnki.jeom.2021.21188.
    [15]
    中国疾控中心环境与健康相关产品安全所. 共享杯版-我国某地区2014-2018年死因及环境监测数据[EB/OL]. (2021-07-06)[2022-09-03]. https://doi.org/10.12213/11.A0006.202109.581.V1.0.
    [16]
    Paul LA, Burnett RT, Kwong JC, et al. The impact of air pollution on the incidence of diabetes and survival among prevalent diabetes cases[J]. Environ Int, 2020, 134: 105333. DOI: 10.1016/j.envint.2019.105333.
    [17]
    Wu RS, Song XM, Chen DH, et al. Health benefit of air quality improvement in Guangzhou, China: results from a long time-series analysis (2006-2016)[J]. Environ Int, 2019, 126: 552-559. DOI: 10.1016/j.envint.2019.02.064.
    [18]
    Qin RX, Xiao CC, Zhu YB, et al. The interactive effects between high temperature and air pollution on mortality: a time-series analysis in Hefei, China[J]. Sci Total Environ, 2017, 575: 1530-1537. DOI: 10.1016/j.scitotenv.2016.10.033.
    [19]
    Lee W, Choi HM, Kim D, et al. Synergic effect between high temperature and air pollution on mortality in Northeast Asia[J]. Environ Res, 2019, 178: 108735. DOI: 10.1016/j.envres.2019.108735.
    [20]
    晋乐飞, 冯斐斐, 段丽菊, 等. 臭氧对呼吸系统影响研究进展[J]. 中国公共卫生, 2015, 31(5): 685-689. DOI: 10.11847/zgggws2015-31-05-43.

    Jin LF, Feng FF, Duan LJ, et al. Effects of ambient ozone on human respiratory system[J]. Chin J Public Health, 2015, 31(5): 685-689. DOI: 10.11847/zgggws2015-31-05-43.
    [21]
    杨虎, 袭著革, 刘晓华, 等. 臭氧对心血管系统影响的研究进展[J]. 解放军预防医学杂志, 2018, 36(2): 271-274. DOI: 10.13704/j.cnki.jyyx.2018.02.034.

    Yang H, Xi ZG, Liu XH, et al. Research progress of ozone effect on cardiovascular system[J]. J Prev Med Chin PLA, 2018, 36(2): 271-274. DOI: 10.13704/j.cnki.jyyx.2018.02.034.
    [22]
    Duan YR, Liao Y, Li HY, et al. Effect of changes in season and temperature on cardiovascular mortality associated with nitrogen dioxide air pollution in Shenzhen, China[J]. Sci Total Environ, 2019, 697: 134051. DOI: 10.1016/j.scitotenv.2019.134051.
    [23]
    Lavigne E, Burnett RT, Weichenthal S. Association of short-term exposure to fine particulate air pollution and mortality: effect modification by oxidant gases[J]. Sci Rep, 2018, 8(1): 16097. DOI: 10.1038/s41598-018-34599-x.
    [24]
    胡建雄, 何冠豪, 马文军. 高温热浪增加人群死亡风险的脆弱性理论框架[J]. 环境与职业医学, 2022, 39(3): 240-246. DOI: 10.11836/JEOM21454.

    Hu JX, He GH, Ma WJ. A theoretical framework for vulnerability of heatwave-related mortality[J]. Journal of Environmental and Occupational Medicine, 2022, 39(3): 240-246. DOI: 10.11836/JEOM21454.
    [25]
    Tang YM, Wang DG, Li J, et al. Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers[J]. Ind Health, 2016, 54(3): 215-223. DOI: 10.2486/indhealth.2014-0225.
    [26]
    Astrand PO, Rodahl K, Dahl HA, et al. Textbook of work physiology: physiological bases of exercise[M]. Champaign: Human Kinetics, 2003: 5.
    [27]
    刘昊辰. 热浪对心血管疾病影响的机理研究[D]. 南京: 南京信息工程大学, 2015.

    Liu HC. Study on the mechanism of the influence of heat wave on cardiovascular diseases[D]. Nanjing: Nanjing University of Information Science & Technology, 2015.
    [28]
    杨军, 欧春泉, 丁研, 等. 广州市逐日死亡人数与气温关系的时间序列研究[J]. 环境与健康杂志, 2012, 29(2): 136-138. DOI: 10.16241/j.cnki.1001-5914.2012.02.015.

    Yang J, Ou CQ, Ding Y, et al. Association between daily temperature and mortality in Guangzhou: a time-series study[J]. J Environ Health, 2012, 29(2): 136-138. DOI: 10.16241/j.cnki.1001-5914.2012.02.015.
    [29]
    Wang CZ, Zhang Z, Zhou MG, et al. Nonlinear relationship between extreme temperature and mortality in different temperature zones: a systematic study of 122 communities across the mainland of China[J]. Sci Total Environ, 2017, 586: 96-106. DOI: 10.1016/j.scitotenv.2017.01.218.
    [30]
    张宇静, 赵天良, 殷翀之, 等. 徐州市大气PM2.5与O3作用关系的季节变化[J]. 中国环境科学, 2019, 39(6): 2267-2272. DOI: 10.19674/j.cnki.issn1000-6923.2019.0269.

    Zhang YJ, Zhao TL, Yin CZ, et al. Seasonal variation of the relationship between surface PM2.5 and O3 concentrations in Xuzhou[J]. China Environmental Science, 2019, 39(6): 2267-2272. DOI: 10.19674/j.cnki.issn1000-6923.2019.0269.
    [31]
    宋全全. 高温热浪与臭氧对冠心病的交互作用影响及机制研究[D]. 兰州: 兰州大学, 2019.

    Song QQ. Study on the interaction between high temperature heat wave and ozone on coronary heart disease and its mechanism[D]. Lanzhou: Lanzhou University, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (81) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return