Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 28 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
JIN Xin, YU Jingbo, CUI Shuangshuang, WANG Yan, YU Hao. SEIHRS_gv model——predicting the influenza-like illness epidemic trend based on short term data[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(9): 1075-1082. doi: 10.16462/j.cnki.zhjbkz.2024.09.013
Citation: JIN Xin, YU Jingbo, CUI Shuangshuang, WANG Yan, YU Hao. SEIHRS_gv model——predicting the influenza-like illness epidemic trend based on short term data[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(9): 1075-1082. doi: 10.16462/j.cnki.zhjbkz.2024.09.013

SEIHRS_gv model——predicting the influenza-like illness epidemic trend based on short term data

doi: 10.16462/j.cnki.zhjbkz.2024.09.013
Funds:

The Scientific and Technological Project of Tianjin Health TJWI2022MS046

More Information
  • Corresponding author: YU Jingbo, E-mail: yujingbo2333@163.com; YU Hao, E-mail: tjcdc_yuhao@163.com
  • Received Date: 2024-06-18
  • Rev Recd Date: 2024-08-21
  • Available Online: 2024-10-24
  • Publish Date: 2024-09-10
  •   Objective  To develop a prediction model for the epidemic trend of influenza-like illness using monitoring data from Tianjin City and quantitatively evaluate the impact of epidemic prevention and control measures on the medical burden caused by influenza-like illness.  Methods  The data from November 6, 2023 to November 15, 2023 were used for fitting the SEIHRS_gv model, and the data from November 15, 2023 to March 31, 2024 were using for validating. Root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination r-square (R2) were used to evaluate the predictive ability of the model.  Results  The SEIHRS_gv model could predict the trend, peak, and crucial point of influenza-like illness epidemics. Using 10 days of data for prediction, with an R2 of 0.85 and an RMSE of 949.5. Increasing the intensity of epidemic prevention and control measures could reduce the number of patients seeking medical treatment.  Conclusions  The SEIHRS_gv model required a few days of data for prediction in this round of influenza-like illness epidemic prediction and had high accuracy in prediction results, which could serve as an efficient predictive model to evaluate the pressure of hospital visits and guide the implementation intensity of epidemic control measures.
  • loading
  • [1]
    中华人民共和国卫生部办公厅. 卫生部办公厅关于印发流感样病例暴发疫情处置指南(2012年版)的通知[EB/OL]. (2012-11-05)[2024-04-30]. https://www.gov.cn/gzdt/2012-11/13/content_2264683.htm.
    [2]
    曹滋莲, 郑雅旭, 杨娟, 等. 2017—2020年上海市流感相关流感样病例门急诊疾病负担估计[J]. 国际病毒学杂志, 2023, 30(3): 214-219. DOI: 10.3760/cma.j.issn.1673-4092.2023.03.008.

    Cao ZL, Zheng YX, Yang J, et al. Disease burden of influenza-associated influenza-like illness in outpatients and emergency departments in Shanghai, 2017-2020[J]. Int J Virol, 2023, 30(3): 214-219. DOI: 10.3760/cma.j.issn.1673-4092.2023.03.008.
    [3]
    侯世娇, 闫红静, 甄珊珊, 等. 2010—2021年上海市闵行区流感样病例及病原学特征[J]. 中华微生物学和免疫学杂志, 2022, 42(12): 965-972. DOI: 10.3760/cma.j.cn112309-20220711-00231.

    Hou SJ, Yan HJ, Zhen SS, et al. Influenza-like illnesses and their etiological characteristics in Minhang District of Shanghai during 2010 to 2021[J]. Chin J Microbiol Immunol, 2022, 42(12): 965-972. DOI: 10.3760/cma.j.cn112309-20220711-00231.
    [4]
    马春娜, 吴双胜, 张莉, 等. 北京市2015—2020年流感流行季流感样病例和流感病原学分析[J]. 中华实验和临床病毒学杂志, 2021, 35(1): 44-48. DOI: 10.3760/cma.j.cn112866-20200803-00220.

    Ma CN, Wu SS, Zhang L, et al. Analysis of the influenza surveillance in Beijing during 2015-2020 influenza seasons[J]. Chin J Exp Clin Virol, 2021, 35(1): 44-48. DOI: 10.3760/cma.j.cn112866-20200803-00220.
    [5]
    Feng LZ, Feng S, Chen T, et al. Burden of influenza-associated outpatient influenza-like illness consultations in China, 2006-2015: a population-based study[J]. Influenza Other Respir Viruses, 2020, 14(2): 162-172. DOI: 10.1111/irv.12711.
    [6]
    World Health Organization. COVID-19 eliminated a decade of progress in global level of life expectancy[EB/OL]. (2024-05-24)[2024-06-11]. https://www.who.int/news/item/24-05-2024-covid-19-eliminated-a-decade-of-progress-in-global-level-of-life-expectancy.
    [7]
    天津市统计局. 天津统计年鉴[EB/OL] (2023-11-23)[2024-04-30]. https://stats.tj.gov.cn/tjsj_52032/tjnj/.
    [8]
    金鑫, 马钰淇, 张寒松, 等. 应对突发公共卫生事件的对策分析——以天津市为例[J]. 中国公共卫生管理, 2024, 40(1): 42-45. DOI: 10.19568/j.cnki.23-1318.2024.01.0010.

    Jin X, Ma YQ, Zhang HS, et al. Analysis of countermeasures in response to public health emergencies: taking Tianjin as an example[J]. Chin J PHM, 2024, 40(1): 42-45. DOI: 10.19568/j.cnki.23-1318.2024.01.0010.
    [9]
    Cai J, Deng XW, Yang J, et al. Modeling transmission of SARS-CoV-2 Omicron in China[J]. Nat Med, 2022, 28(7): 1468-1475. DOI: 10.1038/s41591-022-01855-7.
    [10]
    Mistry D, Litvinova M, Pastore Y Piontti A, et al. Inferring high-resolution human mixing patterns for disease modeling[J]. Nat Commun, 2021, 12(1): 323. DOI: 10.1038/s41467-020-20544-y.
    [11]
    李雪辉, 吕楠, 陈杭薇, 等. 229例成人甲型流感患者临床特征分析[J]. 国际呼吸杂志, 2011, 31(14): 1041-1043. DOI: 10.3760/cma.j.issn.1673-436X.2011.014.001.

    Li XH, Lyu N, Chen HW, et al. Clinical features of 229 cases of adults influenza[J]. Int J Respir, 2011, 31(14): 1041-1043. DOI: 10.3760/cma.j.issn.1673-436X.2011.014.001.
    [12]
    彭伟, 董靖, 王烁. 成人乙型流感病毒肺炎的临床特点及影像学特征[J]. 中国医师杂志, 2023, 25(2): 170-172. DOI: 10.3760/cma.j.cn431274-20230131-00071.

    Peng W, Dong J, Wang S. Clinical and imaging features of adult influenza B viral pneumonia[J]. J Chin Physician, 2023, 25(2): 170-172. DOI: 10.3760/cma.j.cn431274-20230131-00071.
    [13]
    张巧利, 钟新光, 刘志权, 等. 甲型H1N1流行性感冒56例流行病学和临床学分析[J]. 中华传染病杂志, 2009, 27(10): 586-590. DOI: 10.3760/cma.j.issn.1000-6680.2009.10.003.

    Zhang QL, Zhong XG, Liu ZQ, et al. Analysis of epidemiological and clinical characteristics of 56 confirmed cases of influenza a(H1N1)[J]. Chin J Infect Dis, 2009, 27(10): 586-590. DOI: 10.3760/cma.j.issn.1000-6680.2009.10.003.
    [14]
    刘映霞, 杨大国, 谢靖婧, 等. 深圳市甲型H1N1流行性感冒确诊病例流行病学及临床特征[J]. 中华传染病杂志, 2009, 27(10): 582-585. DOI: 10.3760/cma.j.issn.1000-6680.2009.10.002.

    Liu YX, Yang DG, Xie JJ, et al. Epidemiology and clinical manifestations of confirmed cases of influenza a(H1N1)in Shenzhen[J]. Chin J Infect Dis, 2009, 27(10): 582-585. DOI: 10.3760/cma.j.issn.1000-6680.2009.10.002.
    [15]
    刘博, 李素英. 2023年北京某高校流感流行季甲型流感感染及治疗状况分析[J]. 国际病毒学杂志, 2023, 30(5): 419-422. DOI: 10.3760/cma.j.issn.1673-4092.2023.05.016.

    Liu B, Li SY. Infection status and treatment of influenza A in one university in Beijing during the influenza season of 2023[J]. Int J Virol, 2023, 30(5): 419-422. DOI: 10.3760/cma.j.issn.1673-4092.2023.05.016.
    [16]
    李亚品, 钱全, 方立群, 等. 中国大陆2009年早期确诊的420例甲型H1N1流感病例流行病学特征分析[J]. 中华流行病学杂志, 2009, 30(11): 1102-1105. DOI: 10.3760/cma.j.issn.0254-6450.2009.11.002.

    Li YP, Qian Q, Fang LQ, et al. Epidemiological characteristics of 420 influenza A (H1N1) cases confirmed in the early stage of the epidemic in mainland China[J]. Chin J Epidemiol, 2009, 30(11): 1102-1105. DOI: 10.3760/cma.j.issn.0254-6450.2009.11.002.
    [17]
    World Health Organization. Influenza (seasonal)[EB/OL]. (2023-10-03)[2024-04-30]. https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal).
    [18]
    Nair H, Brooks WA, Katz M, et al. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis[J]. Lancet, 2011, 378(9807): 1917-1930. DOI: 10.1016/S0140-6736(11)61051-9.
    [19]
    Thompson WW, Weintraub E, Dhankhar P, et al. Estimates of US influenza-associated deaths made using four different methods[J]. Influenza Other Respir Viruses, 2009, 3(1): 37-49. DOI: 10.1111/j.1750-2659.2009.00073.x.
    [20]
    Shin HY. A multi-stage SEIR(D) model of the COVID-19 epidemic in Korea[J]. Ann Med, 2021, 53(1): 1159-1169. DOI: 10.1080/07853890.2021.1949490.
    [21]
    Girardi P, Gaetan C. An SEIR model with time-varying coefficients for analyzing the SARS-CoV-2 epidemic[J]. Risk Anal, 2023, 43(1): 144-155. DOI: 10.1111/risa.13858.
    [22]
    Mwalili S, Kimathi M, Ojiambo V, et al. SEIR model for COVID-19 dynamics incorporating the environment and social distancing[J]. BMC Res Notes, 2020, 13(1): 352. DOI: 10.1186/s13104-020-05192-1.
    [23]
    Hou YZ, Bidkhori H. Multi-feature SEIR model for epidemic analysis and vaccine prioritization[J]. PLoS One, 2024, 19(3): e0298932. DOI: 10.1371/journal.pone.0298932.
    [24]
    Khairulbahri M. The SEIR model incorporating asymptomatic cases, behavioral measures, and lockdowns: lesson learned from the COVID-19 flow in Sweden[J]. Biomed Signal Process Control, 2023, 81: 104416. DOI: 10.1016/j.bspc.2022.104416.
    [25]
    Guan DB, Wang DP, Hallegatte S, et al. Global supply-chain effects of COVID-19 control measures[J]. Nat Hum Behav, 2020, 4(6): 577-587. DOI: 10.1038/s41562-020-0896-8.
    [26]
    Heredia Cacha I, Sáinz-Pardo Díaz J, Castrillo M, et al. Forecasting COVID-19 spreading through an ensemble of classical and machine learning models: Spain's case study[J]. Sci Rep, 2023, 13(1): 6750. DOI: 10.1038/s41598-023-33795-8.
    [27]
    Durai CAD, Begum A, Jebaseeli J, et al. COVID-19 pandemic, predictions and control in Saudi Arabia using SIR-F and age-structured SEIR model[J]. J Supercomput, 2022, 78(5): 7341-7353. DOI: 10.1007/s11227-021-04149-w.
    [28]
    Abdul Salam M, Taha S, Ramadan M. COVID-19 detection using federated machine learning[J]. PLoS One, 2021, 16(6): e0252573. DOI: 10.1371/journal.pone.0252573.
    [29]
    Gothai E, Thamilselvan R, Rajalaxmi RR, et al. Prediction of COVID-19 growth and trend using machine learning approach[J]. Mater Today Proc, 2023, 81: 597-601. DOI: 10.1016/j.matpr.2021.04.051.
    [30]
    Ma YF, Xu SJ, An Q, et al. Coronavirus disease 2019 epidemic prediction in Shanghai under the "dynamic zero-COVID policy" using time-dependent SEAIQR model[J]. J Biosaf Biosecur, 2022, 4(2): 105-113. DOI: 10.1016/j.jobb.2022.06.002.
    [31]
    王小莉, 曹志冬, 曾大军, 等. 应用SEIR模型预测2009年甲型H1N1流感流行趋势[J]. 国际病毒学杂志, 2011, 18(6): 161-165. DOI: 10.3760/cma.j.issn.1673-4092.2011.06.001.

    Wang XL, Cao ZD, Zeng DJ, et al. Prediction of the epidemic trends of pandemic H1N1 2009, using SEIR model[J]. Int J Virol, 2011, 18(6): 161-165. DOI: 10.3760/cma.j.issn.1673-4092.2011.06.001.
    [32]
    刘晓曼, 郭丽茹, 孔梅, 等. 天津市520例儿童流感样病例病原谱以及流行病学特征分析[J]. 中华微生物学和免疫学杂志, 2022, 42(12): 973-980. DOI: 10.3760/cma.j.cn112309-20220922-00308.

    Liu XM, Guo LR, Kong M, et al. Analysis of the pathogenic spectrum and epidemiological characteristics of 520 children with influenza-like illnesses in Tianjin[J]. Chin J Microbiol Immunol, 2022, 42(12): 973-980. DOI: 10.3760/cma.j.cn112309-20220922-00308.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (52) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return