Citation: | FANG Ruiling, BAI Wenlin, CUI Yuehua, WANG Tong. The mediation analysis of DNA methylation in the relationship between maternal arsenic exposure and neonatal birth weight[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(9): 1090-1095. doi: 10.16462/j.cnki.zhjbkz.2024.09.015 |
[1] |
Barker DJ. The fetal and infant origins of adult disease[J]. BMJ, 1990, 301(6761): 1111. DOI: 10.1136/bmj.301.6761.1111.
|
[2] |
Wadhwa PD, Buss C, Entringer S, et al. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms[J]. Semin Reprod Med, 2009, 27(5): 358-368. DOI: 10.1055/s-0029-1237424.
|
[3] |
Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease[J]. N Engl J Med, 2008, 359(1): 61-73. DOI: 10.1056/NEJMra0708473.
|
[4] |
Jamnik T, Flasch M, Braun D, et al. Next-generation biomonitoring of the early-life chemical exposome in neonatal and infant development[J]. Nat Commun, 2022, 13(1): 2653. DOI: 10.1038/s41467-022-30204-y.
|
[5] |
Shih YH, Scannell Bryan M, Argos M. Association between prenatal arsenic exposure, birth outcomes, and pregnancy complications: an observational study within the national children's study cohort[J]. Environ Res, 2020, 183: 109182. DOI: 10.1016/j.envres.2020.109182.
|
[6] |
Green BB, Karagas MR, Punshon T, et al. Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the new Hampshire birth cohort study (USA)[J]. Environ Health Perspect, 2016, 124(8): 1253-1260. DOI: 10.1289/ehp.1510437.
|
[7] |
Dye CK, Domingo-Relloso A, Kupsco A, et al. Maternal DNA methylation signatures of arsenic exposure is associated with adult offspring insulin resistance in the strong heart study[J]. Environ Int, 2023, 173: 107774. DOI: 10.1016/j.envint.2023.107774.
|
[8] |
Küpers LK, Monnereau C, Sharp GC, et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight[J]. Nat Commun, 2019, 10(1): 1893. DOI: 10.1038/s41467-019-09671-3.
|
[9] |
Yuan V, Hui D, Yin YF, et al. Cell-specific characterization of the placental methylome[J]. BMC Genomics, 2021, 22(1): 6. DOI: 10.1186/s12864-020-07186-6.
|
[10] |
Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution[J]. BMC Bioinformatics, 2012, 13: 86. DOI: 10.1186/1471-2105-13-86.
|
[11] |
Fan JQ, Lyu JC. Sure independence screening for ultrahigh dimensional feature space[J]. J R Stat Soc Ser B Stat Methodol, 2008, 70(5): 849-911. DOI: 10.1111/j.1467-9868.2008.00674.x.
|
[12] |
Tingley D, Yamamoto T, Hirose K, et al. Mediation: R package for causal mediation analysis[J]. J Stat Soft, 2014, 59(5): 1-38. DOI: 10.18637/jss.v059.i05.
|
[13] |
Kumar S, Kumar V, Li WC, et al. Ventx family and its functional similarities with nanog: involvement in embryonic development and cancer progression[J]. Int J Mol Sci, 2022, 23(5): 2741. DOI: 10.3390/ijms23052741.
|
[14] |
Wang GY, Yu J, Yang YW, et al. Whole-transcriptome sequencing uncovers core regulatory modules and gene signatures of human fetal growth restriction[J]. Clin Transl Med, 2020, 9(1): 9. DOI: 10.1186/s40169-020-0259-0.
|
[15] |
Bozack AK, Rifas-Shiman SL, Coull BA, et al. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals[J]. Clin Epigenetics, 2021, 13(1): 208. DOI: 10.1186/s13148-021-01198-z.
|
[16] |
Wang X, Wu H, Yu WH, et al. Hepatocyte nuclear factor 1b is a novel negative regulator of white adipocyte differentiation[J]. Cell Death Differ, 2017, 24(9): 1588-1597. DOI: 10.1038/cdd.2017.85.
|
[17] |
Bozack AK, Domingo-Relloso A, Haack K, et al. Locus-specific differential DNA methylation and urinary arsenic: an epigenome-wide association study in blood among adults with low-to-moderate arsenic exposure[J]. Environ Health Perspect, 2020, 128(6): 67015. DOI: 10.1289/EHP6263.
|