Citation: | HE Chunyi, LI Yanmin, MA Qianying, CAI Yimin, ZHU Ying, TIAN Jianbo, MIAO Xiaoping. Association study of metabolite-related genetic variants and colorectal cancer risk[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(7): 745-749. doi: 10.16462/j.cnki.zhjbkz.2025.07.001 |
[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
|
[2] |
Spaander MCW, Zauber AG, Syngal S, et al. Young-onset colorectal cancer[J]. Nat Rev Dis Primers, 2023, 9: 21. DOI: 10.1038/s41572-023-00432-7.
|
[3] |
Chen ZS, Guo XY, Tao R, et al. Fine-mapping analysis including over 254, 000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes[J]. Nat Commun, 2024, 15(1): 3557. DOI: 10.1038/s41467-024-47399-x.
|
[4] |
Consortium G. The GTEx Consortium atlas of genetic regulatory effects across human tissues[J]. Science, 2020, 369(6509): 1318-1330. DOI: 10.1126/science.aaz1776.
|
[5] |
Zhang M, Chen C, Lu ZQ, et al. Genetic control of alternative splicing and its distinct role in colorectal cancer mechanisms[J]. Gastroenterology, 2023, 165(5): 1151-1167. DOI: 10.1053/j.gastro.2023.07.019.
|
[6] |
Chen KX, Nan JH, Xiong XS. Genetic regulation of m6A RNA methylation and its contribution in human complex diseases[J]. Sci China Life Sci, 2024, 67(8): 1591-1600. DOI: 10.1007/s11427-024-2609-8.
|
[7] |
Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward[J]. Nat Rev Cancer, 2021, 21(10): 669-680. DOI: 10.1038/s41568-021-00378-6.
|
[8] |
Dey P, Kimmelman AC, DePinho RA. Metabolic codependencies in the tumor microenvironment[J]. Cancer Discov, 2021, 11(5): 1067-1081. DOI: 10.1158/2159-8290.CD-20-1211.
|
[9] |
Zhang JP, Zou SM, Fang LK. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy[J]. Cell Biosci, 2023, 13(1): 25. DOI: 10.1186/s13578-023-00977-w.
|
[10] |
Wong CC, Xu JY, Bian XQ, et al. In colorectal cancer cells with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance[J]. Gastroenterology, 2020, 159(6): 2163-2180. e6. DOI: 10.1053/j.gastro.2020.08.016.
|
[11] |
Jing ZL, Liu QM, He XY, et al. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer[J]. J Exp Clin Cancer Res CR, 2022, 41(1): 198. DOI: 10.1186/s13046-022-02412-3.
|
[12] |
Najumudeen AK, Ceteci F, Fey SK, et al. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer[J]. Nat Genet, 2021, 53(1): 16-26. DOI: 10.1038/s41588-020-00753-3.
|
[13] |
Ma QL, Zhang WY, Wu KM, et al. The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy[J]. Mol Cancer, 2025, 24(1): 14. DOI: 10.1186/s12943-024-02218-1.
|
[14] |
Allen NE, Lacey B, Lawlor DA, et al. Prospective study design and data analysis in UK Biobank[J]. Sci Transl Med, 2024, 16(729): eadf4428. DOI: 10.1126/scitranslmed.adf4428.
|
[15] |
Hu CC, Fan Y, Lin ZF, et al. Metabolomic landscape of overall and common cancers in the UK Biobank: a prospective cohort study[J]. Int J Cancer, 2024, 155(1): 27-39. DOI: 10.1002/ijc.34884.
|
[16] |
Sun BB, Chiou J, Traylor M, et al. Plasma proteomic associations with genetics and health in the UK Biobank[J]. Nature, 2023, 622(7982): 329-338. DOI: 10.1038/s41586-023-06592-6.
|
[17] |
Fernandez-Rozadilla C, Timofeeva M, Chen ZS, et al. Deciphering colorectal cancer genetics through multi-omic analysis of 100, 204 cases and 154, 587 controls of European and East Asian ancestries[J]. Nat Genet, 2023, 55(1): 89-99. DOI: 10.1038/s41588-022-01222-9.
|
[18] |
Choi SW, Mak TS, O'Reilly PF. Tutorial: a guide to performing polygenic risk score analyses[J]. Nat Protoc, 2020, 15(9): 2759-2772. DOI: 10.1038/s41596-020-0353-1.
|
[19] |
Cai YM, Lu ZQ, Chen C, et al. An atlas of genetic effects on cellular composition of the tumor microenvironment[J]. Nat Immunol, 2024, 25(10): 1959-1975. DOI: 10.1038/s41590-024-01945-3.
|
[20] |
Sedlak JC, Yilmaz ÖH, Roper J. Metabolism and colorectal cancer[J]. Annu Rev Pathol, 2023, 18: 467-492. DOI: 10.1146/annurev-pathmechdis-031521-041113.
|
[21] |
Karjalainen MK, Karthikeyan S, Oliver-Williams C, et al. Genome-wide characterization of circulating metabolic biomarkers[J]. Nature, 2024, 628(8006): 130-138. DOI: 10.1038/s41586-024-07148-y.
|
[22] |
Tahir UA, Katz DH, Avila-Pachecho J, et al. Whole genome association study of the plasma metabolome identifies metabolites linked to cardiometabolic disease in black individuals[J]. Nat Commun, 2022, 13(1): 4923. DOI: 10.1038/s41467-022-32275-3.
|
[23] |
Xin JY, Du ML, Gu DY, et al. Risk assessment for colorectal cancer via polygenic risk score and lifestyle exposure: a large-scale association study of East Asian and European populations[J]. Genome Med, 2023, 15(1): 4. DOI: 10.1186/s13073-023-01156-9.
|
[24] |
Xu CJ, Gu L, Hu LP, et al. FADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancer[J]. Nat Commun, 2023, 14(1): 2042. DOI: 10.1038/s41467-023-37590-x.
|