• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人感染高致病性H5N6禽流感病毒表面糖蛋白分子进化特征

顾宏伟 祁贤 陈磊垚 鲍倡俊

顾宏伟, 祁贤, 陈磊垚, 鲍倡俊. 人感染高致病性H5N6禽流感病毒表面糖蛋白分子进化特征[J]. 中华疾病控制杂志, 2020, 24(4): 456-461. doi: 10.16462/j.cnki.zhjbkz.2020.04.017
引用本文: 顾宏伟, 祁贤, 陈磊垚, 鲍倡俊. 人感染高致病性H5N6禽流感病毒表面糖蛋白分子进化特征[J]. 中华疾病控制杂志, 2020, 24(4): 456-461. doi: 10.16462/j.cnki.zhjbkz.2020.04.017
GU Hong-wei, QI Xian, CHEN Lei-yao, BAO Chang-jun. Molecular characteristic of the two surface glycoproteins of highly pathogenic avian influenza A H5N6 viruses from human, 2014-2018, China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(4): 456-461. doi: 10.16462/j.cnki.zhjbkz.2020.04.017
Citation: GU Hong-wei, QI Xian, CHEN Lei-yao, BAO Chang-jun. Molecular characteristic of the two surface glycoproteins of highly pathogenic avian influenza A H5N6 viruses from human, 2014-2018, China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(4): 456-461. doi: 10.16462/j.cnki.zhjbkz.2020.04.017

人感染高致病性H5N6禽流感病毒表面糖蛋白分子进化特征

doi: 10.16462/j.cnki.zhjbkz.2020.04.017
基金项目: 江苏省重大科技示范项目(BE2017749);江苏省医学重点学科(ZDXKA2016008)
详细信息
    通讯作者:

    陈磊垚, E-mail:281252195@qq.com

    祁贤, E-mail:qixiansyc@163.com

  • 中图分类号: R181.1

Molecular characteristic of the two surface glycoproteins of highly pathogenic avian influenza A H5N6 viruses from human, 2014-2018, China

Funds: Jiangsu Science & Technology Demonstration Project for Emerging Infectious Diseases Control and Prevention(BE2017749); Jiangsu Key Medical Discipline of Jiangsu Science & Technology Project(ZDXKA2016008)
More Information
  • 摘要:   目的  对19例人感染高致病性H5N6禽流感病毒的血凝素(hemagglutinin, HA)和神经氨酸酶(neuraminidase, NA)蛋白进行分子进化分析。  方法  运用下一代测序平台对病毒分离物进行全基因组测序, 从美国国家生物技术信息中心(national center for biotechnology information, NCBI)和全球流感序列数据库(global initiative on sharing avian influenza data, GISAID)下载参考序列, 利用Blasts、Mega 6.1及Clustal X 2.1等软件进行序列分析。  结果  2014-2018年中国共发生23例人感染H5N6禽流感病毒病例。对19个病例的H5N6病毒的HA和NA基因进行进化分析。HA进化分析显示病毒都属于Clade 2.3.4.4, 其中涉及17个病例的病毒属于Group C; 首例H5N6病例毒株(A/Sichuan/26221/2014)属于Group D; 福建一个病例(A/Fujian-Sanyuan/21099/2017)属于Group B。所有19个病例的病毒HA蛋白的裂解位点含有多个碱性氨基酸。所有病毒的HA蛋白的受体结合位点226~228位氨基酸是QS(R)G(氨基酸排序以H3-HA为准), 理论上对禽类受体α2-3半乳糖苷唾液酸(SAα2-3Gal)有嗜性。18病例病毒的HA蛋白发生了T160A的突变, 导致在158N位点失去糖基化。除了A/Sichuan/26221/2014外, 18个病例的病毒NA蛋白在58~68位缺失了10个氨基酸。9个病例的病毒PB2蛋白发生E627K突变。  结论  2014-2018年间中国人感染H5N6病毒进化活跃, 具有明显的基因多样性, 需要加强对病毒分子进化的监测。
  • 图  1  2014-2018年19例人感染H5N6病毒HA基因进化树

    Figure  1.  Phylogenetic analysis of HA genes of H5N6 viruses from 19 human cases, 2014-2018

    图  2  2014-2018年19例人感染H5N6病毒NA基因进化树

    Figure  2.  Phylogenetic analysis of NA genes of H5N6 viruses from 19 human cases, 2014-2018

    表  1  2014-2018年31株人感染H5N6病毒编码蛋白关键氨基酸位点分析

    Table  1.   Key amino acid mutations of the 31 H5N6 viruses form human, 2014-2018

    蛋白 生物学功能 突变 31株H5N6人病毒 A/Jiangsu/1/2018 A/Sichuan/26221/2014 A/Hubei/29578/2016 A/Fujian-Sanyuan/21099/2017
    HA 受体结合位点(H3排序) Q226L Q(31) Q Q Q Q
    S/R227N S(10), R(17), G(3), H(1) R R S R
    G228S G(31) G G G G
    丧失158位糖基化位点 T160A A(27), T(2), S(2) A A A A
    获得124位糖基化位点 126缺失 缺失(23), E(8) 缺失 E 缺失 E
    裂解位点 REKRRK↓G(2), RERRRK↓G REKRRK↓G RERRRK↓G RERRRK↓G REKRRK↓G
    RERRRK↓G(25),
    RERRRK↓G(25),
    REKRRKKR↓G(2),
    RETR↓G(2)
    NA 茎区 58-68缺失 是(30), 否(1)
    H274Y H H H H H
    R371K R R R R R
    PB2 增强对小鼠毒力 Q591K Q (31) Q Q Q Q
    哺乳动物的适应性 E627K E (13), K(17), X(1) E E E E
    增强对小鼠毒力 D701N D(30), N(1) D N D D
    PB1 增强对雪貂毒力 I368V I(17), V(14) I I V I
    PB1-F2 增强哺乳动物毒力 87-90氨基酸 90(14), 57(1) 52氨基酸 57氨基酸 52氨基酸 52氨基酸
    PA 宿主信号 V100A V(21), A(9), I(1) V V V I
    S409N S(15), N(16) S S N S
    M2 病毒抗性 S31N S(14), N(17) S S N N
    NS1 改变对小鼠毒力 80-84缺失 Yes(14), No(17) Yes Yes No No
    C-末端PED基序 227-300氨基酸 ESEV(14), GSEV(2), ESEV ESEV 截短缺失 GSEV
    RSEV(2), 截短缺失(13)
    增强对小鼠毒力 D92E E(14), D(17) E E D D
    P42S S (31) S S S S
    下载: 导出CSV
  • [1] Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses[J]. PLoS Pathog, 2013, 9(10): e1003657. DOI: 10.1371/journal.ppat.1003657.
    [2] Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype(H16)obtained from black-headed gulls[J]. J Virol, 2005, 79(5): 2814-2822. DOI: 10.1128/JVI.79.5.2814-2822.2005.
    [3] Lee DH, Bertran K, Kwon JH, et al. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3. 4.4[J]. J Vet Sci, 2017, 18(S1): 269-280. DOI: 10.4142/jvs.2017.18.S1.269.
    [4] WHO/OIE/FAO H5N1 Evolution Working Group. Toward a unified nomenclature system for highly pathogenic avian influenza virus(H5N1)[J]. Emerg Infect Dis, 2008, 14(7): e1. DOI: 10.3201/eid1407.071681.
    [5] Qi X, Cui L, Yu H, et al. Whole-genome sequence of a reassortant H5N6 avian influenza virus isolated from a live poultry market in China, 2013[J]. Genome Announc, 2014, 2(5): e00706-14. DOI: 10.1128/genomeA.00706-14.
    [6] Bi Y, Chen Q, Wang Q, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China[J]. Cell Host Microbe, 2016, 20(6): 810-821. DOI: 10.1016/j.chom.2016.10.022.
    [7] Sun W, Li J, Hu J, et al. Genetic analysis and biological characteristics of different internal gene origin H5N6 reassortment avian influenza virus in China in 2016[J]. Vet Microbiol, 2018, 219: 200-211. DOI: 10.1016/j.vetmic.2018.04.023.
    [8] Jiang H, Lai SJ, Qin Y, et al. A review of global human infection with avian influenza and epidemiological characteristics[J]. Chinese Science Bulletin. 2017, 62(19): 2104-2115. DOI: 10.1360/N972017-00267.
    [9] 邓斐, 彭杰夫, 崔仑标, 等. 1例人感染H7N4禽流感病毒分子溯源研究[J].中华微生物学和免疫学杂志, 2018, 38(9): 665-672. DOI: 10.3760/cma.j.issn.0254-5101.2018.09.004.

    Deng F, Peng JF, Cui LB, et al. Genetic origin of avian influenza A H7N4 virus causing a case of human infection in China[J]. Chin J Microbiol Immunol. 2018, 38(9): 665-672. DOI: 10.3760/cma.j.issn.0254-5101.2018.09.004.
    [10] Hoffmann E, Stech J, Guan Y, et al. Universal primer set for the full-length amplification of all influenza A viruses[J]. Arch Virol, 2001, 146(12): 2275-2289. DOI: 10.1007/s007050170002.
    [11] Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees[J]. BMC Evol Biol, 2007, 7: 214. DOI: 10.1186/1471-2148-7-214.
    [12] Global influenza information network. China: CHP notified of human case of avian influenza A(H5N6)in Jiangsu[EB/OL]. (2018-11-23)[2019-12-06]. http://www.flu.org.cn/en/news-19950.html.
    [13] Lee DH, Bahl J, Torchetti MK, et al. Highly pathogenic avian influenza viruses and generation of novel reassortants, United States, 2014-2015[J]. Emerg Infect Dis. 2016, 22(7): 1283-1285. DOI: 10.3201/eid2207.160048.
    [14] Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets[J]. Science, 2012, 336(6088): 1534-1541. DOI: 10.1126/science.1213362.
    [15] Russell CA, Fonville JM, Brown AE., et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host[J]. Science, 2012, 336(6088): 1541-1547. DOI: 10.1126/science.1222526.
    [16] Zhang W, Shi Y, Lu X, et al. An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level[J]. Science, 2013, 340(6139): 1463-1467. DOI: 10.1126/science.1236787.
    [17] Li M, Liu H, Bi Y, et al. Highly pathogenic avian influenza A(H5N8)virus in wild migratory birds, Qinghai Lake, China[J]. Emerg Infect Dis, 2017, 23(4): 637-641. DOI: 10.3201/eid2304.161866.
    [18] Poen MJ, Venkatesh D, Bestebroer TM, et al. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3. 4.4(H5N6)viruses in wild waterfowl and poultry in Europe and East Asia, 2017-2018[J]. Virus Evol, 2019, 22, 5(1): vez004. DOI: 10.1093/ve/vez004.
    [19] Bi Y, Tan S, Yang Y, et al. Clinical and immunological characteristics of human infections with H5N6 avian influenza virus[J]. Clin Infect Dis, 2019, 68(7): 1100-1109. DOI: 10.1093/cid/ciy681.
    [20] Yang L, Zhu W, Li X, et al. Genesis and dissemination of highly pathogenic H5N6 avian influenza viruses[J]. J Virol, 2017, 91(5): e02199-16. DOI: 10.1128/JVI.02199-16.
    [21] Sun H, Pu J, Wei Y, et al. Highly pathogenic avian influenza H5N6 viruses exhibit enhanced affinity for human type sialic acid receptor and in-contact transmission in model ferrets[J]. J Virol, 2016, 90(14): 6235-6243. DOI: 10.1128/JVI.00127-16.
    [22] Herfst S, Mok CKP, van den Brand JMA, et al. Human Clade 2.3. 4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets[J]. mSphere, 2018, 3(1): e00405-17. DOI: 10.1128/mSphere.00405-17.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  173
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-26
  • 修回日期:  2019-12-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回