Epidemiological characteristics and trend prediction of pertussis in Hunan Province from 2009 to 2018
-
摘要:
目的 分析湖南省2009-2018年百日咳发病的流行病学特征,建立自回归移动平均(autoregressive integrated moving average, ARIMA)模型,为百日咳疫情防控提供科学依据。 方法 收集传染病监测系统中2009-2019年的百日咳监测数据资料,分析2009-2018年百日咳流行病学特征,基于2009年1月-2018年12月的百日咳月发病率资料建立预测模型,并对2020年百日咳发病趋势进行预测。 结果 2009-2018年湖南省共报告百日咳病例2 530例,年均报告发病率为0.371/10万;5-9月为百日咳报告的高发月份,10月-次年4月为低发月份;高发地区为娄底市、益阳市、长沙市、郴州市;男性发病率高于女性,报告病例主要为散居儿童、幼托儿童和学生。ARIMA(0, 1, 1) × (0, 1, 0)12为最优预测模型,2019年的发病与模型预测结果基本一致,预测2020年发病率为7.642/10万,高于2019年。 结论 湖南省2018年开始出现百日咳暴发流行,且发病率有持续走高趋势,可能存在“百日咳重现”现象。ARIMA模型在百日咳短期发病趋势预测中效果较好,预测2020年发病水平将继续升高,应结合湖南省百日咳流行病学特征及实际情况进行疫情防控策略调整。 Abstract:Objective Analyzing the epidemiological characteristics of pertussis in Hunan Pro-vince from 2009 to 2018, and establishing an autoregressive moving average model, to provide scientific basis for the prevention and control of pertussis. Methods The surveillance data of pertussis in Hunan Pro-vince during 2009-2019 were collected from the infectious disease reporting information management system, and the epidemiological characteristics of pertussis were analyzed. A prediction model was established based on the monthly incidence date fron January 2009 to December 2018, and the pertussis incidence of 2020 was predicted. Results 2 530 pertussis cases were reported in Hunan Province from 2009 to 2018 with an average annual incidence of 0.371/100 000. The incidence of pertussis was relatively higher between May and September, which was lower between October and April of the next year. The incidence was higher in Loudi, Yiyang, Changsha and Chenzhou. The incidence of pertussis in male was higher than that in female, and the reported cases were mainly composed of scattered children, preschool children and students. ARIMA (0, 1, 1) × (0, 1, 0)12 was the optimal prediction model, and the incidence of pertussis in 2019 was basically consistent with that predicted by the model. The incidence of pertussis predicted by ARIMA in 2020 was 7.642/100 000, which was higher than that in 2019. Conclusions Pertussis began to break out in Hunan Province in 2018, and the incidence continued increasing. The phenomenon of "pertussis recurrence" may exist in Hunan Province. ARIMA model was effective in predicting the short-term incidence trend of pertussis, and it was predicted that the incidence level will continue increasing in 2020, so the epidemic prevention and control strategy of pertussis should be adjusted according to the epidemiological characteristics and specific situations in Hunan Province. -
Key words:
- Pertussis /
- Epidemiological characteristics /
- ARIMA model /
- Prediction
-
表 1 湖南省2009-2018年百日咳发病率季节指数
Table 1. Seasonal index of pertussis incidence in Hunan Province from 2009 to 2018
月份 发病率(月均值,1/10万) 季节指数 1 0.007 0.22 2 0.013 0.42 3 0.027 0.88 4 0.023 0.76 5 0.032 1.04 6 0.039 1.27 7 0.052 1.69 8 0.059 1.90 9 0.041 1.33 10 0.026 0.86 11 0.025 0.81 12 0.025 0.81 表 2 湖南省2019-2020年百日咳发病预测情况与2019年实际情况(发病率,1/10万)
Table 2. Comparison between forecast and real incidencesituation of pertussis in Hunan Province (incidence, 1/100 000)
月份 2019年 2020年 实际值 预测值 95% CI值 预测值 95% CI值 1 0.206 0.217 0.067~0.267 0.415 0.154~0.675 2 0.308 0.256 0.171~0.341 0.454 0.160~0.748 3 0.563 0.351 0.241~0.460 0.549 0.224~0.873 4 0.595 0.368 0.239~0.497 0.566 0.214~0.918 5 0.724 0.455 0.309~0.602 0.654 0.276~1.032 6 0.756 0.510 0.349~0.672 0.709 0.307~1.111 7 0.926 0.621 0.445~0.796 0.820 0.395~1.244 8 0.940 0.692 0.503~0.880 0.891 0.445~1.337 9 0.517 0.543 0.342~0.743 0.743 0.276~1.209 10 0.271 0.430 0.218~0.642 0.630 0.144~1.117 11 0.192 0.409 0.186~0.632 0.610 0.105~1.115 12 0.220 0.401 0.168~0.635 0.603 0.079~1.126 -
崔健, 曹雷, 郑景山, 等.中国2015年国家免疫规划疫苗报告接种率分析[J].中国疫苗和免疫, 2017, 23(6):601-607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjhmy201503010Cui J, Cao L, Zheng JS, et al. Reported coverage of vaccines in the National Immunization Program of China, 2015[J]. Chinese Journal of Vaccines and Immunization, 2017, 23(6):601-607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjhmy201503010 宁桂军, 高源, 吴丹, 等.中国2011-2017年百日咳流行病学特征分析[J].中国疫苗和免疫, 2018, 24(3):264-267, 273. http://www.cqvip.com/QK/90851A/201803/675603079.htmlNing GJ, Gao Y, Wu D, et al. Epidemiology of pertussis in China, 2011-2017[J]. Chinese Journal of Vaccines and Immunization, 2018, 24(3):264-267, 273. http://www.cqvip.com/QK/90851A/201803/675603079.html 蒋凤, 申涛, 张德著, 等. 2014-2016年贵州省百日咳报告病例流行病学特征分析[J].中国疫苗和免疫, 2018, 24(3):268-273. http://www.cqvip.com/QK/90851A/201803/675603080.htmlJiang F, Shen T, Zhang DZ, et al. Epidemiological characteristics of pertussis in Guizhou province, 2014-2016[J]. Chinese Journal of Vaccines and Immunization, 2018, 24(3):268-273. http://www.cqvip.com/QK/90851A/201803/675603080.html 吴丹遐, 陈强, 申昆玲.百日咳的临床研究进展[J].中国当代儿科杂志, 2016, 18(9):897-902. http://d.wanfangdata.com.cn/Periodical/zgddekzz201609023Wu DX, Chen Q, Shen KL. Recent progress in clinical research on pertussis[J]. Chin J Contemp Pediatr, 2016, 18(9):897-902. http://d.wanfangdata.com.cn/Periodical/zgddekzz201609023 王增国, 马超锋, 闫永平.全球百日咳重现及中国百日咳相关研究现状[J].中国疫苗和免疫, 2016, 22(3):345-349. http://www.cqvip.com/QK/90851A/201603/669630039.htmlWang ZG, Ma CF, Yan YP. Global Pertussis Resurgence and the Status of Related Pertussis Researches in China[J]. Chinese Journal of Vaccines and Immunization, 2016, 22(3):345-349. http://www.cqvip.com/QK/90851A/201603/669630039.html Domenech de Cellès M, King AA, Rohani P. Commentary: resolving pertussis resurgence and vaccine immunity using mathematical transmission models[J]. Hum Vaccin Immunother, 2019, 15(3):683-686. DOI: 10.1080/21645515.2018.1549432. Aloe C, Kulldorff M, Bloom BR. Geospatial analysis of nonmedical vaccine exemptions and pertussis outbreaks in the United States[J]. Proc Natl Acad Sci U S A, 2017, 114(27):7101-7105. DOI: 10.1073/pnas.1700240114. 杨维中.传染病预警理论与实践[M].北京:人民卫生出版社, 2012.Yang WZ. Early Warning of Infectious Disease Theory and Practice[M]. Beijing: People' s Medical Publishing House, 2012. Wang K, Song W, Li J, et al. The Use of an Autoregressive Integrated Moving Average Model for Prediction of the Incidence of Dysentery in Jiangsu, China[J]. Asia Pac J Public Health, 2016, 28(4):336-346. DOI: 10.1177/1010539516645153. 熊昱阳, 任静朝, 段广才.中国2008-2016年手足口病月发病率时间序列分析及预测模型[J].中华疾病控制杂志, 2019, 23(11):1394-1398. DOI: 10.16462/j.cnki.zhjbkz.2019.11.019.Xiong YY, Ren JZ, Duan GC. Application of the time series model in prediction of incidence of hand-foot-mouth disease from 2008 to 2016 in China[J]. Chin J Dis Control Prev, 2019, 23(11):1394-1398. DOI: 10.16462/j.cnki.zhjbkz.2019.11.019. 杨文姣, 肖俊玲, 丁国武. ARIMA模型和BP神经网络模型在甘肃省结核病发病率预测中的应用[J].中华疾病控制杂志, 2019, 23(6):728-732. DOI: 10.16462/j.cnki.zhjbkz.2019.06.021.Yang WJ, Xiao JL, Ding GW. Application of ARIMA model and BP neural network model in prediction of tuberculosis incidence in Gansu Province[J]. Chin J Dis Control Prev, 2019, 23(6):728-732. DOI: 10.16462/j.cnki.zhjbkz.2019.06.021. 郑月彬, 朱国魂.基于Twitter数据的时间序列模型在流行性感冒预测中的应用[J].中国预防医学杂志, 2019, 20(9): 793-798. DOI: 10.16506/j.1009-6639.2019.09.006.Zheng YB, Zhu GH. Application of Twitter time series model in influenza prediction[J]. Chin Prev Med, 2019, 20(9): 793-798. DOI: 10.16506/j.1009-6639.2019.09.006. 黄莉, 陈田木, 杨云斌, 等.应用SARIMA模型预测肺结核发病趋势[J].现代预防医学, 2019, 46(5):794-797, 803. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=XDYF201905007Huang L, Chen TM, Yang YB, et al. Application of SARIMA model to predict the incidence of pulmonary tuberculosis[J]. Modern Prevent Med, 2019, 46(5):794-797, 803. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=XDYF201905007 刘丹丹, 潘跃娜, 焦安夏, 等.疫苗使用前后百日咳的流行病学变化[J].中国实用儿科杂志, 2020, 35(2):157-162. DOI: 10.19538/j.ek2020020617.Liu DD, Pan YN, Jiao AX, et al. Epidemiological changes of pertussis before and after the use of vaccines[J]. Chin J Pract Pediatr, 2020, 35(2):157-162. DOI: 10.19538/j.ek2020020617. 苏琪茹, 姚开虎.疫苗时代疫苗可预防疾病流行病学和临床表现的变化[J].中国当代儿科杂志, 2019, 21(3):195-198. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_other_thesis/040006543909.htmlSu QR, Yao KH. Epidemiological and clinical features of vaccine-preventable diseases in vaccine era[J]. Chin J Contemp Pediatr, 2019, 21(3):195-198. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_other_thesis/040006543909.html