Risk factors and pathogen characteristics of adult type 2 diabetes mellitus patients with community-onset bloodstream infection
-
摘要:
目的 研究成人2型糖尿病(T2DM)患者社区发生血流感染(COBSI)的危险因素和病原菌特征,为早期诊治提供理论依据。 方法 回顾分析合肥市第二人民医院2017年1月―2020年3月成人社区发生感染的T2DM住院患者293例,根据48 h内血培养结果分为血流感染(BSI)组和对照组,分析危险因素,构建预测模型,检验模型。分析社区获得性血流感染(CABSI)和医疗健康相关性血流感染(HCABSI)组间的病原菌特点。 结果 构建预测模型P=1/(1+e-y),y=-45.137+0.751×院外或入院48 h内体温峰值+0.033×中性粒细胞百分比+0.027×血浆渗透压+0.009×血C反应蛋白+1.144×肾功能衰竭+1.740×糖尿病酮症酸中毒(DKA),模型曲线下面积(AUC)为0.800,95% CI为(0.747~0.853),最佳截断值为0.208,灵敏度为0.90,特异度为0.56。对模型的校准度予以Hosmer-lemeshow检验,χ2=12.285,P=0.139。CABSI和HCABSI组间在革兰阴性菌(G-)、大肠埃希菌、产超广谱β-内酰胺酶大肠埃希菌、革兰阳性菌(G+)和金黄色葡萄球菌的检出差异均具有统计学意义(均有P < 0.05)。 结论 院外或入院48 h内体温峰值、中性粒细胞百分比、血浆渗透压、血C反应蛋白、肾功能衰竭、DKA是成人T2DM患者COBSI的危险因素。预测模型具有较高的灵敏度,CABSI和HCABSI组间病原菌存在差异,对早期诊治具有临床指导意义。 Abstract:Objective To analyze the risk factors and pathogen characteristics of adult type 2 diabetes mellitus (T2DM) patients with community-onset bloodstream infection (COBSI) risk, so as to provide theoretical basis for early diagnosis and treatment. Methods A total of 293 T2DM inpatients who were admitted to the Second People's Hospital of Hefei from the adult community during 2017/01-2020/03 were retrospectively analyzed, which were divided into bloodstream infection (BSI) group and control group according to the blood results within 48 hours. Based on the analysis of the risk factors, prediction model and test model were constructed. The characteristics of pathogenic bacteria was analyzed on community acquired bloodstream infection (CABSI) group and health care-associated community acquired bloodstream infection (HCABSI) group. Results The prediction model was established. P=1/(1+e-y), y=-45.137+0.751×peak body temperature outside the hospital or within 48 h of admission+0.033×neutrophil percentage+0.027×plasma osmotic pressure+0.009×blood C-reactive protein+1.144×kidney failure+1.740×diabetic ketoacidosis. The area under a curve (AUC) of the model was 0.800, 95% CI was from 0.747 to 0.853, and the optimal cutoff value was 0.208 and the sensitivity was 0.90, specificity was 0.56. Hosmer-lemeshow test was performed for the calibration degree of the model, χ2=12.285, P=0.139. There were statistically significant differences (all P < 0.05) between CABSI and HCABSI groups in Gram-negative bacteria (G-), extended-spectrum β-lactamases-producing Escherichia coli, Escherichia coli, Gram-positive bacteria (G+) and Staphylococcus aureus. Conclusions Peak body temperature outside the hospital or within 48 hours of admission, neutrophil percentage, plasma osmotic pressure, serum C-reactive protein, kidney failure, and diabetic ketoacidosis are risk factors for COBSI in adult T2DM patients. The prediction model has good sensitivity, and there are differences in pathogenic bacteria between CABSI and HCABSI groups, which has clinical guiding significance for early diagnosis and treatment. -
Key words:
- Diabetes /
- Type 2 /
- Bloodstream infection /
- Risk factors /
- Pathogenic bacteria
-
表 1 2017年1月―2020年3月合肥市第二人民医院成人2型糖尿病患者社区发生血流感染临床资料比较[M(P25,P75)/n(%)]
Table 1. Comparison of clinical data of community-onset acquired bloodstream infection in adult type 2 diabetes mellitus patients in the Second People's Hospital of Hefei from 2017/01 to 2020/03 [M(P25, P75)/n(%)]
项目 BSI组(n=95) 对照组(n=198) χ2/Z值 P值 年龄(岁) 69.0(60.0, 76.3) 70.0(62.0, 77.0) -0.799 0.424 性别 2.503 0.114 男 41(43.2) 105(53.0) 女 54(56.8) 93(47.0) 院外或入院48 h内体温峰值(℃) 39.2(38.6, 39.6) 38.9(38.5, 39.2) -3.378 0.001 HR(次/分) 95(84, 110) 96(85, 106) -0.099 0.921 MAP(mmHg) 96.67(84.00, 107.33) 97.5(88.33, 106.00) -0.820 0.412 医疗护理相关 42(44.2) 77(38.9) 0.754 0.385 COPD 5(5.3) 7(3.5) 0.147 0.701 血管疾病 49(51.6) 110(55.6) 0.409 0.522 高血压 54(56.8) 123(62.1) 0.748 0.387 肾功能衰竭 32(33.7) 24(12.1) 19.308 < 0.001 恶性肿瘤 9(9.5) 11(5.6) 1.550 0.213 皮肤黏膜屏障破坏 26(27.4) 23(11.6) 11.438 0.001 血液透析 19(20.0) 17(8.6) 7.761 0.005 DKA 8(8.4) 3(1.5) 6.670 0.010 抗生素暴露 5(5.3) 8(4.0) 0.030 0.863 糖皮质激素和(或)免疫抑制药物 5(5.3) 3(1.5) 2.131 0.144 WBC(×109/L) 10.83(7.92, 13.86) 10.91(7.30, 14.37) -0.606 0.544 NEU(×109/L) 9.35(6.58, 12.49) 8.86(5.77, 12.67) -1.348 0.178 LYM(×109/L) 0.69(0.49, 0.98) 0.90(0.62, 1.32) -4.142 < 0.001 NEU% 88.70(84.40, 91.70) 84.90(78.03, 88.92) -4.818 < 0.001 NLR 13.98(10.27, 20.40) 10.18(5.92, 15.80) -4.158 < 0.001 PLT(×109/L) 138.5(98.0, 184.0) 151.0(119.0, 197.0) -1.810 0.070 PLR 0.063(0.045, 0.100) 0.055(0.038, 0.086) -2.422 0.015 ALB(g/L) 34.80(30.13, 39.63) 37.60(34.20, 40.50) -3.505 < 0.001 PA(mg/L) 104.90(57.68, 171.28) 122.95(90.95, 157.20) -1.756 0.079 FBG(mmol/L) 10.40(7.12, 13.11) 8.69(6.58, 11.41) -2.506 0.012 Na(mmol/L) 136.00(133.00, 139.00) 136.50(133.00, 141.00) -0.725 0.468 Cr(μmol/L) 93.00(64.60, 286.60) 80.00(60.78, 105.33) -2.400 0.016 血CRP(mg/L) 32.66(17.68, 133.80) 15.46(6.35, 26.88) -5.639 < 0.001 血浆渗透压(mOsm/L) 303.55(294.96, 310.26) 300.64(291.19, 306.76) -2.255 0.024 HbA1c(%) 8.50(7.00, 10.70) 7.80(6.80, 9.60) -1.803 0.071 注:HR:心率,MAP:平均动脉压,COPD:慢性阻塞性肺疾病,DKA:糖尿病酮症酸中毒,WBC:白细胞计数,NEU:中性粒细胞计数,LYM:淋巴细胞计数,NEU%:中性粒细胞百分比,NLR:中性粒细胞-淋巴细胞比值,PLT:血小板,PLR:血小板-淋巴细胞比值,ALB:白蛋白,PA:前蛋白,FBG:空腹血糖,Na:钠,Cr:肌酐,CRPC:反应蛋白,HbA1c:糖化血红蛋白。 表 2 2017年1月―2020年3月合肥市第二人民医院成人2型糖尿病患者社区发生血流感染的多因素Logistic回归分析
Table 2. Multivariate Logistic regression analysis of risk factors for community-onset acquired blood stream infection in adult type 2 diabetes mellitus patients in the Second People's Hospital of Hefei from 2017/01 to 2020/03
因素 β sx Waldχ2值 P值 OR(95% CI)值 院外或入院48h内体温峰值(℃) 0.751 0.237 10.027 0.002 2.119(1.331~3.372) Neut%(%) 0.033 0.015 4.655 0.031 1.034(1.003~1.066) 血浆渗透压(mOsm/L) 0.027 0.013 4.467 0.035 1.027(1.002~1.053) 血CRP(mg/L) 0.009 0.002 15.932 < 0.001 1.009(1.005~1.014) 肾功能衰竭 1.144 0.365 9.835 0.002 3.141(1.536~6.422) DKA 1.740 0.790 4.849 0.028 5.697(1.211~26.802) 常量 -45.137 10.706 17.774 < 0.001 表 3 2017年1月―2020年3月合肥市第二人民医院成人2型糖尿病患者社区发生血流感染的病原学特点[n(%)]
Table 3. Pathogenic characteristics of community-onset acquired bloodstream infection in adult type 2 diabetes mellitus patients in the Second People's Hospital of Hefei from 2017/01 to 2020/03 [n(%)]
致病菌 CABSI组(n=53) HCABSI组(n=45) χ2/Z值 P值 革兰阴性菌 44(83.0) 21(46.7) 14.400 < 0.001 大肠埃希菌 31(58.5) 7(15.6) 18.897 < 0.001 肺炎克雷伯菌 9(17.0) 10(22.2) 0.428 0.513 产气肠杆菌 2(3.8) 0(0.0) - 0.498 粘质沙雷菌 1(1.9) 0(0.0) < 0.001 1.000 变形杆菌属 0(0.0) 1(2.2) - 0.459 弗劳地柠檬酸杆菌 0(0.0) 2(4.4) - 0.208 脆弱拟杆菌 1(1.9) 1(2.2) - 1.000 革兰阳性菌 8(15.1) 22(48.9) 13.085 < 0.001 金黄色葡萄球菌 0(0.0) 11(24.4) 14.594 < 0.001 表皮葡萄球菌 2(3.8) 4(8.9) 0.397 0.529 其他凝固酶阴性葡萄球菌 4(7.5) 3(6.7) < 0.001 1.000 肺炎链球菌 1(1.9) 0(0.0) - 1.000 其他链球菌 1(1.9) 1(2.2) - 1.000 肠球菌 0(0.0) 3(6.7) 1.745 0.187 真菌 1(1.9) 2(4.4) 0.021 0.885 白假丝酵母菌 1(1.9) 2(4.4) 0.021 0.885 耐药菌 10(18.9) 6(13.3) 0.546 0.460 产ESBLs大肠埃希菌 9(17.0) 1(2.2) 4.287 0.038 产ESBLs肺炎克雷伯菌 0(0.0) 1(2.2) - 0.459 CRKP 0(0.0) 1(2.2) - 0.459 MRSA 0(0.0) 2(4.4) - 0.208 MRCNS 1(1.9) 1(2.2) - 1.000 注:ESBLs超广谱β-内酰胺酶、CRKP耐碳青酶烯类肺炎克雷伯菌,MRSA耐甲氧西林金黄色葡萄球菌,MRCNS耐甲氧西林的凝固酶阴性葡萄球菌。 -
[1] Wang LM, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24):2515-2523. DOI: 10.1001/jama.2017.7596. [2] 梁蓓, 姜利, 刘淑梅, 等.首都医科大学附属复兴医院2012年住院患者血流感染分析[J].中华内科杂志, 2016, 55(8):609-612. DOI: 10.3760/cma.j.issn.0578-1426.2016.08.008.Liang B, Jiang L, Liu SM, et al. The epidemiology of bloodstream infections in fuxing hospital in 2012 in Beijing[J]. Chin J Intern Med, 2016, 55(8):609-612. DOI: 10.3760/cma.j.issn.0578-1426.2016.08.008. [3] Hoenigl H, Wagner J, Raggam RB, et al. Characteristics of hospital-acquired and community-onset bloodstream infections, South-East Austria[J]. PLoS One, 2014, 9(8):e104702. DOI: 10.1371/journal.pone.0104702. [4] Friedman ND, Kaye KS, Stout JE, et al. Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections[J]. Ann Intern Med, 2002, 137(10):791-797. DOI: 10.7326/0003-4819-137-10-200211190-00007. [5] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2017年版)[J].中华糖尿病杂志, 2018, 10(1):4-67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003.Chinese Diabetes Society. Chinese guideline for the prevention and treatment of type 2 diabetes mellitus (2017 edition)[J]. Chin J Diabetes Mellitus, 2018, 10(1):4-67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003. [6] 中华人民共和国卫生部.医院感染诊断标准(试行)[J].中华医学杂志, 2001, 81(5):314-320. DOI: 10.3760/j:issn:0376-2491.2001.05.027.Ministry of Health of the People's Republic of China. Diagnostic criteria for nosocomial infections (for trial implementation)[J]. Natl Med J China, 2001, 81(5):314-320. DOI: 10.3760/j:issn:0376-2491.2001.05.027. [7] 中华医学会检验医学分会.临床微生物学血培养操作规范[J].中华检验医学杂志, 2004, 27(2):124-126. DOI: 10.3760/j:issn:1009-9158.2004.02.025.Chinese Society of Laboratory Medicine. Diagnostic criteria for nosocomial infections (for trial implementation)[J]. Chin J Lab Med, 2004, 27(2):124-126. DOI: 10.3760/j:issn:1009-9158.2004.02.025. [8] Donnelly JP, Nair S, Griffin R, et al. Association of diabetes and insulin therapy with risk of hospitalization for Infection and 28-Day mortality risk[J]. Clin Infect Dis, 2017, 64(4):435-442. DOI: 10.1093/cid/ciw738. [9] Takeshita N, Kawamura I, Kurai H, et al. Unique characteristics of community-onset healthcare-associated bloodstream infections: a multi-centre prospective surveillance study of bloodstream infections in Japan[J]. J Hosp Infect, 2017, 96(1):29-34. DOI: 10.1016/j.jhin.2017.02.022. [10] Abu-Ashour W, Twells LK, Valcour JE, et al. Diabetes and the occurrence of infection in primary care: a matched cohort study[J]. BMC Infect Dis, 2018, 18(1):67. DOI: 10.1186/s12879-018-2975-2. [11] Leisman DE, Doerfler ME, Schneider SM, et al. Predictors, prevalence, and outcomes of early crystalloid responsiveness among initially hypotensive patients with sepsis and septic shock[J]. Critical Care Medicine, 2018, 46(2):189-198. DOI: 10.1097/CCM.0000000000002834. [12] 潘亚萍, 沈继录, 徐元宏, 等.不同感染性指标在血流感染早期诊断中的应用价值[J].中国感染与化疗杂志, 2016, 16(5):571-577. DOI: 10.16718/j.1009-7708.2016.05.008.Pan YP, Shen JL, Xu YH, et al. Utility of procalcitonin, C-reactive protein, white blood cell count, neutrophils count and percentage in early diagnosis of bloodstream infection[J]. Clin J Infect Chemother, 2016, 16(5):571-577. DOI: 10.16718/j.1009-7708.2016.05.008. [13] Pan YP, Fang YP, Xu YH, et al. The diagnostic value of procalcitonin versus other biomarkers in prediction of bloodstream infection[J]. Clin Lab, 2017, 63(2):277-285. DOI: 10.7754/Clin.Lab.2016.160802. [14] Anderson DJ, Moehring RW, Sloane R, et al. Bloodstream infections in community hospitals in the 21st century: A multicenter cohort study[J]. PLoS One, 2014, 9(3):e91713. DOI: 10.1371/journal.pone.0091713.