• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于控制论的传染病动态防控模型

吴剑旗 汪曦露 刘军伟 张江辉 李川 朱庆明 李江源 苏纪娟 刘畅

吴剑旗, 汪曦露, 刘军伟, 张江辉, 李川, 朱庆明, 李江源, 苏纪娟, 刘畅. 基于控制论的传染病动态防控模型[J]. 中华疾病控制杂志, 2023, 27(6): 621-626. doi: 10.16462/j.cnki.zhjbkz.2023.06.001
引用本文: 吴剑旗, 汪曦露, 刘军伟, 张江辉, 李川, 朱庆明, 李江源, 苏纪娟, 刘畅. 基于控制论的传染病动态防控模型[J]. 中华疾病控制杂志, 2023, 27(6): 621-626. doi: 10.16462/j.cnki.zhjbkz.2023.06.001
WU Jianqi, WANG Xilu, LIU Junwei, ZHANG Jianghui, LI Chuan, ZHU Qingming, LI Jiangyuan, SU Jijuan, LIU Chang. A dynamic epidemic prevention and control model based on cybernetics[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(6): 621-626. doi: 10.16462/j.cnki.zhjbkz.2023.06.001
Citation: WU Jianqi, WANG Xilu, LIU Junwei, ZHANG Jianghui, LI Chuan, ZHU Qingming, LI Jiangyuan, SU Jijuan, LIU Chang. A dynamic epidemic prevention and control model based on cybernetics[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2023, 27(6): 621-626. doi: 10.16462/j.cnki.zhjbkz.2023.06.001

基于控制论的传染病动态防控模型

doi: 10.16462/j.cnki.zhjbkz.2023.06.001
基金项目: 

中国工程院战略研究与咨询项目 2022-XZ-43

详细信息
    通讯作者:

    刘军伟,E-mail:hfjwliu4@163.com

  • 中图分类号: R181.8

A dynamic epidemic prevention and control model based on cybernetics

Funds: 

Strategic Research and Consulting Project of Chinese Academy of Engineering 2022-XZ-43

More Information
  • 摘要: 自古以来传染病就是人类生命健康的最大威胁之一,2019年开始在全球肆虐的COVID-19疫情也表明研究传染病传播规律任重道远。将传染病传播看成是一个动态系统,将负反馈机制引入传染病传播模型,揭示了控制措施和科技手段在传染病防控中起到的作用,对积极防控包括COVID-19在内的重大疫情及未来有效防御生物武器具有指导意义。
  • 图  1  控制原理示意图

    Figure  1.  Schematic diagram of control principle

    图  2  J-SEIR模型

    Figure  2.  J-SEIR model

    图  3  传染病防控控制原理框图

    Figure  3.  Schematic diagram of prevention and control of infectious diseases

    图  4  基于J-SEIR的疫情控制模型

    Figure  4.  J-SEIR based epidemic control model

    图  5  疫情前期较慢防控反应时间+较低病毒阳性检出率仿真

    Figure  5.  Simulation of slow response time + low virus positive detection rate in the early epidemic period

    图  6  疫情前期较快防控反应时间+较高病毒阳性检出率仿真

    Figure  6.  Simulation of fast response time + high virus positive detection rate in the early epidemic period

    图  7  疫情后期较快防控反应时间+较高病毒阳性检出率结果

    Figure  7.  Simulation of fast response time + high virus positive detection rate in the late epidemic period

    图  8  疫情后期常态化疫情防控仿真

    Figure  8.  Simulation of regular epidemic prevention and control in the late epidemic period

  • [1] Ma C, Li X, Zhao Z, et al. Understanding dynamics of pandemic models to support predictions of COVID-19 transmission: parameter sensitivity analysis of SIR-type models[J]. IEEE J Biomed Health Inform, 2022, 26(6): 2458-2468. DOI: 10.1109/JBHI.2022.3168825.
    [2] 喻孜, 张贵清, 刘庆珍, 等. 基于时变参数-SIR模型的COVID-19疫情评估和预测[J]. 电子科技大学学报, 2020, 49(3): 357-361. DOI: 10.12178/1001-0548.2020027.

    Zi Y, Zhang GQ, Liu QZ, et al. The outbreak assessment and prediction of COVID-19 based on time-varying SIR model[J]. J Univ Electron Sci Technol China, 2020, 49(3): 357-361. DOI: 10.12178/1001-0548.2020027.
    [3] Lux T. The social dynamics of COVID-19[J]. Physica A, 2021, 567: 125710. DOI: 10.1016/j.physa.2020.125710.
    [4] Alenezi MN, Al-Anzi FS, Alabdulrazzaq H. Building a sensible SIR estimation model for COVID-19 outspread in Kuwait[J]. Alex Eng J, 2021, 60(3): 3161-3175. DOI: 10.1016/j.aej.2021.01.025.
    [5] 须成杰, 覃开舟. 基于SEIR模型的新型冠状病毒肺炎疫情分析[J]. 计算机应用与软件, 2021, 38(12): 87-90. DOI: 10.3969/j.issn.1000-386x.2021.12.015.

    Xu CJ, Qin KZ. Epidemic analysis of COVID-19 based on SEIR model[J]. Comput Appl Softw, 2021, 38(12): 87-90. DOI: 10.3969/j.issn.1000-386x.2021.12.015.
    [6] 孙皓宸, 刘肖凡, 许小可, 等. 基于连续感染模型的新冠肺炎校园传播与防控策略分析[J]. 物理学报, 2020, 69(24): 74-83. DOI: 10.7498/aps.69.20201106.

    Sun HC, Liu XF, Xu XK, et al. Analysis of COVID-19 spreading and prevention strategy in schools based on continuous infection model[J]. Acta Phys Sin, 2020, 69(24): 74-83. DOI: 10.7498/aps.69.20201106.
    [7] Carcione JM, Santos JE, Bagaini C, et al. A simulation of a COVID-19 epidemic based on a deterministic SEIR model[J]. Front Public Health, 2020, 8: 230. DOI: 10.3389/fpubh.2020.00230.
    [8] Kuniya T. Evaluation of the effect of the state of emergency for the first wave of COVID-19 in Japan[J]. Infect Dis Model, 2020, 5: 580-587. DOI: 10.1016/j.idm.2020.08.004.
    [9] Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. J Thorac Dis, 2020, 12(3): 165-174. DOI: 10.21037/JTD.2020.02.64.
    [10] Zhao Y, Huang J, Zhang L, et al. Is the Omicron variant of SARS-CoV-2 coming to an end?[J]. Innovation (Camb), 2022, 3(3): 100240. DOI: 10.1016/j.xinn.2022.100240.
    [11] 唐三一, 唐彪, Bragazzi NL, 等. 新型冠状病毒肺炎疫情数据挖掘与离散随机传播动力学模型分析[J]. 中国科学: 数学, 2020, 50(8): 1071-1086. DOI: 10.1360/SSM-2020-0053.

    Tang SY, Tang B, Bragazzi NL, et al. Analysis of COVID-19 epidemic traced data and stochastic discrete transmission dynamic model[J]. Sci Sin Math, 2020, 50(8): 1071-1086. DOI: 10.1360/SSM-2020-0053.
    [12] Du Z, Wang L, Cauchemez S, et al. Risk for transportation of coronavirus disease from Wuhan to other cities in China[J]. Emerg Infect Dis, 2020, 26(5): 1049-1052. DOI: 10.3201/eid2605.200146.
    [13] 于振华, 黄山阁, 杨波, 等. 新型冠状病毒肺炎传播动力学模型构建与分析[J]. 西安交通大学学报, 2022, 56(5): 43-53. DOI: 10.7652/xjtuxb202205005.

    Yu ZH, Huang SG, Yang B. Dynamics modeling and analysis of COVID-19[J]. Journal of Xi'an Jiaotong University, 2022, 56(5): 43-53. DOI: 10.7652/xjtuxb202205005.
    [14] Roosa K, Lee Y, Luo R, et al. Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13-23, 2020[J]. J Clin Med, 2020, 9(2): 596. DOI: 10.3390/jcm9020596.
    [15] 王国强, 张烁, 杨俊元, 等. 耦合不同年龄层接触模式的新冠肺炎传播模型[J]. 物理学报, 2021, 70(1): 210-220. DOI: 10.7498/aps.70.20201371.

    Wang GQ, Zhang S, Yang JY, et al. Study of coupling the age-structured contact patterns to the COVID-19 pandemic transmission[J]. Acta Phys Sin, 2021, 70(1): 210-220. DOI: 10.7498/aps.70.20201371.
    [16] Kiouach D, Sabbar Y. Global dynamics analysis of a stochastic SIRS epidemic model with vertical transmission and different periods of immunity[J]. Int J Dyn Syst Differ Equ, 2020, 10(5): 468-491. DOI: 10.1504/ijdsde.2020.111485.
    [17] Xiao W, Liu Q, Ji H, et al. A cybernetics-based dynamic infection model for analyzing SARS-COV-2 infection stability and predicting uncontrollable risks[EB/OL]. (2020-03-13)[2023-03-15]. https://www.researchgate.net/publication/340001029_A_Cybernetics-based_Dynamic_Infection_Model_for_Analyzing_SARS-COV-2_Infection_Stability_and_Predicting_Uncontrollable_Risks.
    [18] Wiener N. Cybernetics: or the control and communication in the animal and the machine[M]. Cambridge: MIT Press, 2000: 95-115.
    [19] 曹鹤飞. 新型冠状病毒流行病关键参数估计与网络传播动力学研究[D]. 成都: 电子科技大学, 2021.

    Cao HF. Research on key parameter estimation and network transmission dynamics of SARS-CoV-2[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
  • 加载中
图(8)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  124
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-04-05
  • 网络出版日期:  2023-07-10
  • 刊出日期:  2023-06-10

目录

    /

    返回文章
    返回